Chao-Chyun An, Ming-Hsien Wu, Yu-wei Huang, Tai-Hong Chen, C. Chao, W. Yeh
{"title":"Study on flip chip assembly of high density micro-LED array","authors":"Chao-Chyun An, Ming-Hsien Wu, Yu-wei Huang, Tai-Hong Chen, C. Chao, W. Yeh","doi":"10.1109/IMPACT.2011.6117235","DOIUrl":null,"url":null,"abstract":"Flip chip assembly technology is an attractive solution for high I/O density and fine-pitch microelectronics packaging. Recently, high efficient GaN-based light-emitting diodes (LEDs) have undergone a rapid development and flip chip bonding has been widely applied to fabricate high-brightness GaN micro-LED arrays [1]. The flip chip GaN LED has some advantages over the traditional top-emission LED, including improved current spreading, higher light extraction efficiency, better thermal dissipation capability and the potential of further optical component integration [2, 3]. With the advantages of flip chip assembly, micro-LED (μLED) arrays with high I/O density can be performed with improved luminous efficiency than conventional p-side-up micro-LED arrays and are suitable for many potential applications, such as micro-displays, bio-photonics and visible light communications (VLC), etc. In particular, μLED array based selif-emissive micro-display has the promising to achieve high brightness and contrast, reliability, long-life and compactness, which conventional micro-displays like LCD, OLED, etc, cannot compete with. In this study, GaN micro-LED array device with flip chip assembly package process was presented. The bonding quality of flip chip high density micro-LED array is tested by daisy chain test. The p-n junction tests of the devices are measured for electrical characteristics. The illumination condition of each micro-diode pixel was examined under a forward bias. Failure mode analysis was performed using cross sectioning and scanning electron microscopy (SEM). Finally, the fully packaged micro-LED array device is demonstrated as a prototype of dice projector system.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"27 1","pages":"336-338"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2011.6117235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Flip chip assembly technology is an attractive solution for high I/O density and fine-pitch microelectronics packaging. Recently, high efficient GaN-based light-emitting diodes (LEDs) have undergone a rapid development and flip chip bonding has been widely applied to fabricate high-brightness GaN micro-LED arrays [1]. The flip chip GaN LED has some advantages over the traditional top-emission LED, including improved current spreading, higher light extraction efficiency, better thermal dissipation capability and the potential of further optical component integration [2, 3]. With the advantages of flip chip assembly, micro-LED (μLED) arrays with high I/O density can be performed with improved luminous efficiency than conventional p-side-up micro-LED arrays and are suitable for many potential applications, such as micro-displays, bio-photonics and visible light communications (VLC), etc. In particular, μLED array based selif-emissive micro-display has the promising to achieve high brightness and contrast, reliability, long-life and compactness, which conventional micro-displays like LCD, OLED, etc, cannot compete with. In this study, GaN micro-LED array device with flip chip assembly package process was presented. The bonding quality of flip chip high density micro-LED array is tested by daisy chain test. The p-n junction tests of the devices are measured for electrical characteristics. The illumination condition of each micro-diode pixel was examined under a forward bias. Failure mode analysis was performed using cross sectioning and scanning electron microscopy (SEM). Finally, the fully packaged micro-LED array device is demonstrated as a prototype of dice projector system.