{"title":"In Situ Acoustic Temperature Measurement During Variable-Frequency Microwave Curing","authors":"C. Davis, A. Dickherber, W. Hunt, G. May","doi":"10.1109/TEPM.2008.2004570","DOIUrl":null,"url":null,"abstract":"Variable-frequency microwave (VFM) curing can perform the same processing steps as conventional thermal processing in minutes, without compromising intrinsic material properties. With increasing demand for novel dielectrics, there is a corresponding demand for new processing techniques that lead to comparable or better properties than conventional methods. VFM processing can be a viable alternative to conventional thermal techniques. However, current limitations include a lack of reliable temperature measuring techniques. This research focuses on developing a reliable temperature measuring system using acoustic techniques to monitor low-k polymer dielectrics cured on silicon wafers in a VFM furnace. The acoustic sensor exhibits the capability to measure temperatures from 20degC to 300degC with an attainable accuracy of plusmn2 degrees.","PeriodicalId":55010,"journal":{"name":"IEEE Transactions on Electronics Packaging Manufacturing","volume":"30 1","pages":"273-284"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electronics Packaging Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEPM.2008.2004570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Variable-frequency microwave (VFM) curing can perform the same processing steps as conventional thermal processing in minutes, without compromising intrinsic material properties. With increasing demand for novel dielectrics, there is a corresponding demand for new processing techniques that lead to comparable or better properties than conventional methods. VFM processing can be a viable alternative to conventional thermal techniques. However, current limitations include a lack of reliable temperature measuring techniques. This research focuses on developing a reliable temperature measuring system using acoustic techniques to monitor low-k polymer dielectrics cured on silicon wafers in a VFM furnace. The acoustic sensor exhibits the capability to measure temperatures from 20degC to 300degC with an attainable accuracy of plusmn2 degrees.