J. Osenbach, H. Reynolds, G. Henshall, R. Parker, P. Su
{"title":"Tin Whisker Test Development—Temperature and Humidity Effects Part II: Acceleration Model Development","authors":"J. Osenbach, H. Reynolds, G. Henshall, R. Parker, P. Su","doi":"10.1109/TEPM.2009.2032919","DOIUrl":null,"url":null,"abstract":"The incubation time for both whisker growth and corrosion in thin Sn platings (3-10 ¿m thick) on Cu-based alloys have been found to be well represented by an exponential function of humidity and an Arrhenius function of temperature for both as-deposited and reflowed tin platings. Furthermore, whisker growth was found to follow the same functionality in both corroded and non-corroded regions of the plating. The effective activation energies and humidity coefficients were found to depend upon plating thickness, exposure to reflow, and presence of corrosion. The effective activation energies ranged from 0.23 eV to 0.41 eV and the humidity coefficients ranged from -0.012% to -0.031%. Corrosion enhanced whisker growth occurred by lowering the effective activation energy for whisker growth. A theory based on excess, non-creep relaxed, oxidation induced strain was developed to explain the corrosion induced energy barrier lowering. The data showed that 60°C/87%RH appears to be the optimal high temperature/high humidity test condition at this time for Sn over Cu substrates. Within the limits of the whisker and corrosion (incubation) acceleration functions developed in this study, it is concluded that the JEDEC tests can be used to indicate behavior at other temperature/humidity points that could be relevant storage or service conditions.","PeriodicalId":55010,"journal":{"name":"IEEE Transactions on Electronics Packaging Manufacturing","volume":"61 1","pages":"16-24"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electronics Packaging Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEPM.2009.2032919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
The incubation time for both whisker growth and corrosion in thin Sn platings (3-10 ¿m thick) on Cu-based alloys have been found to be well represented by an exponential function of humidity and an Arrhenius function of temperature for both as-deposited and reflowed tin platings. Furthermore, whisker growth was found to follow the same functionality in both corroded and non-corroded regions of the plating. The effective activation energies and humidity coefficients were found to depend upon plating thickness, exposure to reflow, and presence of corrosion. The effective activation energies ranged from 0.23 eV to 0.41 eV and the humidity coefficients ranged from -0.012% to -0.031%. Corrosion enhanced whisker growth occurred by lowering the effective activation energy for whisker growth. A theory based on excess, non-creep relaxed, oxidation induced strain was developed to explain the corrosion induced energy barrier lowering. The data showed that 60°C/87%RH appears to be the optimal high temperature/high humidity test condition at this time for Sn over Cu substrates. Within the limits of the whisker and corrosion (incubation) acceleration functions developed in this study, it is concluded that the JEDEC tests can be used to indicate behavior at other temperature/humidity points that could be relevant storage or service conditions.