Liv Engel, Amy R Wolff, Madelyn Blake, Val L Collins, Sonal Sinha, Benjamin T Saunders
{"title":"Dopamine neurons drive spatiotemporally heterogeneous striatal dopamine signals during learning.","authors":"Liv Engel, Amy R Wolff, Madelyn Blake, Val L Collins, Sonal Sinha, Benjamin T Saunders","doi":"10.1101/2023.07.01.547331","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental cues, through Pavlovian learning, become conditioned stimuli that invigorate and guide animals toward acquisition of rewards. Dopamine neurons in the ventral tegmental area (VTA) and substantia nigra (SNC) are crucial for this process. Dopamine neurons are embedded in a reciprocally connected network with their striatal targets, the functional organization of which remains poorly understood. Here, we investigated how learning during optogenetic Pavlovian cue conditioning of VTA or SNC dopamine neurons directs cue-evoked behavior and shapes subregion-specific striatal dopamine dynamics. We used a fluorescent dopamine biosensor to monitor dopamine in the nucleus accumbens (NAc) core and shell, dorsomedial striatum (DMS), and dorsolateral striatum (DLS). We demonstrate spatially heterogeneous, learning-dependent dopamine changes across striatal regions. While VTA stimulation evoked robust dopamine release in NAc core, shell, and DMS, cues predictive of this activation preferentially recruited dopamine release in NAc core, starting early in training, and DMS, late in training. Corresponding negative prediction error signals, reflecting a violation in the expectation of dopamine neuron activation, only emerged in the NAc core and DMS, and not the shell. Despite development of vigorous movement late in training, conditioned dopamine signals did not similarly emerge in the DLS, even during Pavlovian conditioning with SNC dopamine neuron activation, which elicited robust DLS dopamine release. Together, our studies show broad dissociation in the fundamental prediction and reward-related information generated by different dopamine neuron populations and signaled by dopamine across the striatum. Further, they offer new insight into how larger-scale plasticity across the striatal network emerges during Pavlovian learning to coordinate behavior.</p>","PeriodicalId":44549,"journal":{"name":"Journal of Continuing Higher Education","volume":"35 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Continuing Higher Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.07.01.547331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental cues, through Pavlovian learning, become conditioned stimuli that invigorate and guide animals toward acquisition of rewards. Dopamine neurons in the ventral tegmental area (VTA) and substantia nigra (SNC) are crucial for this process. Dopamine neurons are embedded in a reciprocally connected network with their striatal targets, the functional organization of which remains poorly understood. Here, we investigated how learning during optogenetic Pavlovian cue conditioning of VTA or SNC dopamine neurons directs cue-evoked behavior and shapes subregion-specific striatal dopamine dynamics. We used a fluorescent dopamine biosensor to monitor dopamine in the nucleus accumbens (NAc) core and shell, dorsomedial striatum (DMS), and dorsolateral striatum (DLS). We demonstrate spatially heterogeneous, learning-dependent dopamine changes across striatal regions. While VTA stimulation evoked robust dopamine release in NAc core, shell, and DMS, cues predictive of this activation preferentially recruited dopamine release in NAc core, starting early in training, and DMS, late in training. Corresponding negative prediction error signals, reflecting a violation in the expectation of dopamine neuron activation, only emerged in the NAc core and DMS, and not the shell. Despite development of vigorous movement late in training, conditioned dopamine signals did not similarly emerge in the DLS, even during Pavlovian conditioning with SNC dopamine neuron activation, which elicited robust DLS dopamine release. Together, our studies show broad dissociation in the fundamental prediction and reward-related information generated by different dopamine neuron populations and signaled by dopamine across the striatum. Further, they offer new insight into how larger-scale plasticity across the striatal network emerges during Pavlovian learning to coordinate behavior.