P. Bogdan, E. Zaytseva, P. O. Baranov, A. I. Stepanenko
{"title":"Analysis of Illumination Generated by LED Matrices Distribution","authors":"P. Bogdan, E. Zaytseva, P. O. Baranov, A. I. Stepanenko","doi":"10.21122/2220-9506-2022-13-1-60-67","DOIUrl":null,"url":null,"abstract":"Сreation of indoor lighting systems with the possibility of changing its parameters in space and time is a promising direction within the framework of the intellectual environment system. The aim of this work was to create a methodology for calculating the illumination created by LED matrices which does not require the use of specialized software products and is adapted to the possibility of varying the parameters of LEDs and illuminated rooms.The urgency of creating a room lighting system that simulates the conditions of natural lighting taking into account the need to change its spectral composition in time, in space taking into account the physical and psychological state of a person is substantiated. The possibility of using well-known computer programs to calculate the distribution of illumination in the room is analyzed.A method has been developed for calculating the distribution of illumination on a plane using both a flat LED matrix and a matrix with an inclined arrangement of the planes of individual LEDs. It is shown that the distribution of illumination is a function of the indicatrix of the light intensity of the LED, its location in space, the number of LEDs in the matrix.Illumination distribution has been calculated for various light sources consisting of RGB LEDs both for desktop and ceiling lighting was calculated. It is established that when using matrices containing the same LEDs distribution of illumination is very nonuniform. The inclined arrangement of LED planes slightly increases uniformity reducing the maximum illumination. For ceiling lighting the option of uniform distribution of LEDs within the ceiling plane provides more uniform illumination than when the same number of LEDs are arranged in groups of matrices.Results of LED sources modeling indicate the need to modernize simple orthogonal matrices containing the same type of elements with the same power modes for all elements in order to increase the uniformity of illumination and efficiency. Such modernization can be carried out by changing the geometry of matrices differentiating the power modes of individual LEDs. The developed calculation program can be supplemented with options for introducing the above changes, as well as options for analyzing the spectral distribution of light in space. ","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Devices and Methods of Measurements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2220-9506-2022-13-1-60-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 1
Abstract
Сreation of indoor lighting systems with the possibility of changing its parameters in space and time is a promising direction within the framework of the intellectual environment system. The aim of this work was to create a methodology for calculating the illumination created by LED matrices which does not require the use of specialized software products and is adapted to the possibility of varying the parameters of LEDs and illuminated rooms.The urgency of creating a room lighting system that simulates the conditions of natural lighting taking into account the need to change its spectral composition in time, in space taking into account the physical and psychological state of a person is substantiated. The possibility of using well-known computer programs to calculate the distribution of illumination in the room is analyzed.A method has been developed for calculating the distribution of illumination on a plane using both a flat LED matrix and a matrix with an inclined arrangement of the planes of individual LEDs. It is shown that the distribution of illumination is a function of the indicatrix of the light intensity of the LED, its location in space, the number of LEDs in the matrix.Illumination distribution has been calculated for various light sources consisting of RGB LEDs both for desktop and ceiling lighting was calculated. It is established that when using matrices containing the same LEDs distribution of illumination is very nonuniform. The inclined arrangement of LED planes slightly increases uniformity reducing the maximum illumination. For ceiling lighting the option of uniform distribution of LEDs within the ceiling plane provides more uniform illumination than when the same number of LEDs are arranged in groups of matrices.Results of LED sources modeling indicate the need to modernize simple orthogonal matrices containing the same type of elements with the same power modes for all elements in order to increase the uniformity of illumination and efficiency. Such modernization can be carried out by changing the geometry of matrices differentiating the power modes of individual LEDs. The developed calculation program can be supplemented with options for introducing the above changes, as well as options for analyzing the spectral distribution of light in space.