Deniz Pekin, G. Perret, Quentin Rezard, J. Gerbedoen, S. Meignan, D. Collard, Chann Lagadec, M. Tarhan
{"title":"Subcellular Imaging During Single Cell Mechanical Characterization","authors":"Deniz Pekin, G. Perret, Quentin Rezard, J. Gerbedoen, S. Meignan, D. Collard, Chann Lagadec, M. Tarhan","doi":"10.1109/MEMS46641.2020.9056362","DOIUrl":null,"url":null,"abstract":"We report a method for combining confocal microscopy with single-cell mechanical characterization. This method allows investigating the effect of subcellular deformation (e.g. membranes, cytoplasm, cytoskeleton and organelles as endoplasmic reticulum, mitochondria, and nucleus) on cell mechanical properties (e.g. stiffness and viscosity). Such a method is essential to choose biologically relevant mechanical properties of malignant cells as diagnostic cancer biomarkers. Using MEMS tweezers, we captured live single cancer cells and performed subcellular imaging during compression assays for mechanical measurements to obtain the deformation-dependent cell properties.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"1 1","pages":"62-65"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We report a method for combining confocal microscopy with single-cell mechanical characterization. This method allows investigating the effect of subcellular deformation (e.g. membranes, cytoplasm, cytoskeleton and organelles as endoplasmic reticulum, mitochondria, and nucleus) on cell mechanical properties (e.g. stiffness and viscosity). Such a method is essential to choose biologically relevant mechanical properties of malignant cells as diagnostic cancer biomarkers. Using MEMS tweezers, we captured live single cancer cells and performed subcellular imaging during compression assays for mechanical measurements to obtain the deformation-dependent cell properties.