Deep learning-based hybrid feature selection for the semantic segmentation of crops and weeds

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lamin L. Janneh , Youngjun Zhang , Mbemba Hydara , Zhongwei Cui
{"title":"Deep learning-based hybrid feature selection for the semantic segmentation of crops and weeds","authors":"Lamin L. Janneh ,&nbsp;Youngjun Zhang ,&nbsp;Mbemba Hydara ,&nbsp;Zhongwei Cui","doi":"10.1016/j.icte.2023.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Deep convolution neural networks are the recent algorithms used for robotic vision. However, the complex crop–weed vegetation and the background interferences required a robust feature representation. Therefore, we proposed a Dual-branch Deep neural network for the semantic segmentation of crops and weeds. The branches utilized distinct feature extraction algorithms that extract essential semantic cues, and a decoder combined these features to improve the global contextual information. Finally, the hybrid feature selection module(HSFM) utilized the decoder features to complement one another. Experimental results show the proposed method obtained mean intersection of union scores of 0.8613 and 0.9099 on CWFID and BoniRob datasets, respectively.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 1","pages":"Pages 118-124"},"PeriodicalIF":4.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959523000875/pdfft?md5=b386ec19e230be5c446383ee349566a9&pid=1-s2.0-S2405959523000875-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959523000875","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep convolution neural networks are the recent algorithms used for robotic vision. However, the complex crop–weed vegetation and the background interferences required a robust feature representation. Therefore, we proposed a Dual-branch Deep neural network for the semantic segmentation of crops and weeds. The branches utilized distinct feature extraction algorithms that extract essential semantic cues, and a decoder combined these features to improve the global contextual information. Finally, the hybrid feature selection module(HSFM) utilized the decoder features to complement one another. Experimental results show the proposed method obtained mean intersection of union scores of 0.8613 and 0.9099 on CWFID and BoniRob datasets, respectively.

基于深度学习的混合特征选择用于农作物和杂草的语义分割
深度卷积神经网络是最近用于机器人视觉的算法。然而,复杂的作物-杂草植被和背景干扰需要一种稳健的特征表示。因此,我们提出了一种用于农作物和杂草语义分割的双分支深度神经网络。各分支利用不同的特征提取算法来提取重要的语义线索,而解码器则结合这些特征来改进全局上下文信息。最后,混合特征选择模块(HSFM)利用解码器特征相互补充。实验结果表明,所提出的方法在 CWFID 和 BoniRob 数据集上分别获得了 0.8613 和 0.9099 的平均交叉联合得分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信