Capacitive Lamé Mode Resonators in $65\ \mu \mathrm{m}$-Thick Monocrystalline Silicon Carbide with Q-Factors Exceeding 20 Million

Jeremy Yang, B. Hamelin, F. Ayazi
{"title":"Capacitive Lamé Mode Resonators in $65\\ \\mu \\mathrm{m}$-Thick Monocrystalline Silicon Carbide with Q-Factors Exceeding 20 Million","authors":"Jeremy Yang, B. Hamelin, F. Ayazi","doi":"10.1109/MEMS46641.2020.9056301","DOIUrl":null,"url":null,"abstract":"This paper reports on the implementation of a capacitive in-plane Lamé mode resonator in $65\\ \\mu \\mathrm{m}$-thick monocrystalline 4H silicon carbide on insulator (SiCOI) with ultra-low dissipation. Boasting the highest $f\\cdot Q$ in Lamé mode resonators to date, this work is a stepping stone toward realizing a myriad of high-performance instruments and sensors in monocrystalline SiC. In addition to providing chemical and environmental robustness, SiC exhibits extremely low levels of intrinsic dissipation, potentially enabling $f\\cdot Q\\mathrm{s}\\ 30\\times$ higher than those achievable in silicon (Si). However, attaining quantum-limited microresonators demands scrupulous processing and careful, deliberate design. With this in view, Lamé mode square resonators are excellent candidates to probe the fundamental phonon dissipation limits of SiC. Acoustically-engineered anchoring tethers composed of 1D phononic crystal (PnC) strips localize the acoustic vibration, limiting losses to the substrate. Electrostatically-transduced Lamé mode resonators are fabricated by deep reactive ion etching (DRIE) of fusion bonded SiCOI substrates, displaying a $Q$-factor of 20 Million (M) at 6.27 MHz with $f\\cdot Q=1.25 \\times 10^{14}$ Hz, over 4× above the Akhiezer limit set in (100) Si substrates. With further process optimization, these resonators can theoretically achieve $Q\\mathrm{s}$ in excess of 100M at room temperature. Across the temperature range −45° to 85°C, the thermal coefficient of frequency (TCF) of on-axis 4H-SiC Lamé modes is −12 ppm/°C.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"8 1","pages":"226-229"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper reports on the implementation of a capacitive in-plane Lamé mode resonator in $65\ \mu \mathrm{m}$-thick monocrystalline 4H silicon carbide on insulator (SiCOI) with ultra-low dissipation. Boasting the highest $f\cdot Q$ in Lamé mode resonators to date, this work is a stepping stone toward realizing a myriad of high-performance instruments and sensors in monocrystalline SiC. In addition to providing chemical and environmental robustness, SiC exhibits extremely low levels of intrinsic dissipation, potentially enabling $f\cdot Q\mathrm{s}\ 30\times$ higher than those achievable in silicon (Si). However, attaining quantum-limited microresonators demands scrupulous processing and careful, deliberate design. With this in view, Lamé mode square resonators are excellent candidates to probe the fundamental phonon dissipation limits of SiC. Acoustically-engineered anchoring tethers composed of 1D phononic crystal (PnC) strips localize the acoustic vibration, limiting losses to the substrate. Electrostatically-transduced Lamé mode resonators are fabricated by deep reactive ion etching (DRIE) of fusion bonded SiCOI substrates, displaying a $Q$-factor of 20 Million (M) at 6.27 MHz with $f\cdot Q=1.25 \times 10^{14}$ Hz, over 4× above the Akhiezer limit set in (100) Si substrates. With further process optimization, these resonators can theoretically achieve $Q\mathrm{s}$ in excess of 100M at room temperature. Across the temperature range −45° to 85°C, the thermal coefficient of frequency (TCF) of on-axis 4H-SiC Lamé modes is −12 ppm/°C.
65\ \mu \ mathm {m}$厚单晶硅q因子超过2000万的电容式lam模谐振器
本文报道了一种电容式平面内lam模谐振器在65\ \mu \ \m {m}$厚的超低损耗单晶4H碳化硅绝缘子(SiCOI)上的实现。拥有迄今为止lam模式谐振器中最高的$f\cdot Q$,这项工作是实现单晶SiC中无数高性能仪器和传感器的垫脚石。除了提供化学和环境稳健性外,SiC还表现出极低的固有耗散水平,潜在地使其比硅(Si)高30倍。然而,获得量子限制微谐振器需要严谨的处理和精心的设计。有鉴于此,lam模方谐振器是探索碳化硅基本声子耗散极限的理想选择。由一维声子晶体(PnC)条组成的声学工程锚索可以定位声振动,从而限制对衬底的损失。采用深度反应离子刻蚀(deep reactive ion etching, DRIE)法制备了融合键合SiCOI衬底的静电转导lam模式谐振器,在6.27 MHz下显示出$Q因子为2000万(M), $f\cdot Q=1.25 \times 10^{14}$ Hz,比(100)Si衬底的Akhiezer极限高出4倍以上。通过进一步的工艺优化,这些谐振器在室温下理论上可以达到超过100M的$Q\ mathm {s}$。在- 45°至85°C的温度范围内,轴上4H-SiC lam模式的频率热系数(TCF)为- 12 ppm/°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信