{"title":"Distribution of intracellular calcium during flow-induced migration of RAW264.7 cells","authors":"Shurong Wang , Qing Sun , Yang Zhao , Bo Huo","doi":"10.1016/j.mbm.2023.100012","DOIUrl":null,"url":null,"abstract":"<div><p>Cell migration is an important biological process regulated by mechanical stimulation, which leads to intracellular calcium response. Cell migration are dependent on the distribution and dynamic changes of intracellular calcium concentration. However, the temporal relation among mechanical stimulation, cell migration, and intracellular calcium distribution remains unclear. In this study, unidirectional flow and oscillatory flow were applied on osteoclast precursor RAW264.7 cells. The parameters of cell migration under fluid flow and intracellular calcium distribution along the migration or flow direction were calculated. Experimental results suggest the cells to adjust the [Ca<sup>2+</sup>]<sub>i</sub> distribution in the migration direction is independent of flow application or the reverse of flow direction, but the [Ca<sup>2+</sup>]<sub>i</sub> distribution in the flow direction is determined by the [Ca<sup>2+</sup>]<sub>i</sub> distribution-adjusting ability of cells and flow stimulation. Blocking calcium signaling pathways, namely, mechanosensitive cation-selective channels, phospholipase C, and endoplasmic reticulum, and removing extracellular calcium inhibited cell migration along the flow direction and the gradient distribution of intracellular calcium. This study provided insights into the mechanism of flow-induced cell migration and quantitative data for the recruitment of osteoclast precursors targeting the location of bone resorption.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 1","pages":"Article 100012"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907023000128/pdfft?md5=7b57f22e0cac83ae0794c8da4fd1ba1d&pid=1-s2.0-S2949907023000128-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907023000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cell migration is an important biological process regulated by mechanical stimulation, which leads to intracellular calcium response. Cell migration are dependent on the distribution and dynamic changes of intracellular calcium concentration. However, the temporal relation among mechanical stimulation, cell migration, and intracellular calcium distribution remains unclear. In this study, unidirectional flow and oscillatory flow were applied on osteoclast precursor RAW264.7 cells. The parameters of cell migration under fluid flow and intracellular calcium distribution along the migration or flow direction were calculated. Experimental results suggest the cells to adjust the [Ca2+]i distribution in the migration direction is independent of flow application or the reverse of flow direction, but the [Ca2+]i distribution in the flow direction is determined by the [Ca2+]i distribution-adjusting ability of cells and flow stimulation. Blocking calcium signaling pathways, namely, mechanosensitive cation-selective channels, phospholipase C, and endoplasmic reticulum, and removing extracellular calcium inhibited cell migration along the flow direction and the gradient distribution of intracellular calcium. This study provided insights into the mechanism of flow-induced cell migration and quantitative data for the recruitment of osteoclast precursors targeting the location of bone resorption.
细胞迁移是受机械刺激调控的一个重要生物过程,机械刺激会导致细胞内钙反应。细胞迁移依赖于细胞内钙浓度的分布和动态变化。然而,机械刺激、细胞迁移和细胞内钙分布之间的时间关系仍不清楚。本研究将单向流和振荡流应用于破骨细胞前体 RAW264.7 细胞。计算了细胞在流体流动下的迁移参数以及沿迁移或流动方向的细胞内钙分布。实验结果表明,细胞调节迁移方向上的[Ca2+]i分布与流动应用或流动方向相反无关,但流动方向上的[Ca2+]i分布由细胞的[Ca2+]i分布调节能力和流动刺激决定。阻断钙信号通路,即机械敏感性阳离子选择性通道、磷脂酶 C 和内质网,清除细胞外钙,可抑制细胞沿流动方向的迁移和细胞内钙的梯度分布。这项研究揭示了流动诱导细胞迁移的机制,并提供了针对骨吸收位置的破骨细胞前体招募的定量数据。