The purification and identification of antioxidants and dipeptidyl peptidase IV inhibitory peptides from whey protein hydrolysates

Zheng Yuanrong, Pang Jiakun, Liu Zhenmin
{"title":"The purification and identification of antioxidants and dipeptidyl peptidase IV inhibitory peptides from whey protein hydrolysates","authors":"Zheng Yuanrong,&nbsp;Pang Jiakun,&nbsp;Liu Zhenmin","doi":"10.1002/fbe2.12027","DOIUrl":null,"url":null,"abstract":"<p>In the present study, whey protein was enzymatically hydrolyzed using an ultrahigh-pressure synergistic enzymolysis method. The antioxidant activities and DPP-IV inhibitory activities of the enzymatic hydrolysates were measured. Three-layer isolation and purification were conducted on the enzymatic hydrolysates with antioxidant activity and DPP-IV inhibitory activity by gel filtration chromatography and RP-HPLC. The amino acid sequences were determined by LC-MS/MS. The identified amino acid sequences were then synthesized, and their antioxidants and DPP-IV inhibitory activities were determined. The results showed that 3 of the 14 polypeptides of N3-8 exhibited high antioxidant activity. Among them, peptide DDQNPHSSN had both high antioxidant activity and DPP-IV inhibitory activity. When the concentration was 1 mg/mL, then the ABTS radical scavenging rate, DPPH radical scavenging rate and reducing power were prominent, reaching 91.42%, 88.76%, and 0.637%, respectively, and DPP-IV inhibitory activity reached 66.28%. Whey protease hydrolysates are expected to be commercially developed as functional peptides.</p>","PeriodicalId":100544,"journal":{"name":"Food Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fbe2.12027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fbe2.12027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, whey protein was enzymatically hydrolyzed using an ultrahigh-pressure synergistic enzymolysis method. The antioxidant activities and DPP-IV inhibitory activities of the enzymatic hydrolysates were measured. Three-layer isolation and purification were conducted on the enzymatic hydrolysates with antioxidant activity and DPP-IV inhibitory activity by gel filtration chromatography and RP-HPLC. The amino acid sequences were determined by LC-MS/MS. The identified amino acid sequences were then synthesized, and their antioxidants and DPP-IV inhibitory activities were determined. The results showed that 3 of the 14 polypeptides of N3-8 exhibited high antioxidant activity. Among them, peptide DDQNPHSSN had both high antioxidant activity and DPP-IV inhibitory activity. When the concentration was 1 mg/mL, then the ABTS radical scavenging rate, DPPH radical scavenging rate and reducing power were prominent, reaching 91.42%, 88.76%, and 0.637%, respectively, and DPP-IV inhibitory activity reached 66.28%. Whey protease hydrolysates are expected to be commercially developed as functional peptides.

Abstract Image

乳清蛋白水解物中抗氧化剂及二肽基肽酶IV抑制肽的纯化与鉴定
本研究采用超高压协同酶解法对乳清蛋白进行酶解。测定酶解物的抗氧化活性和DPP-IV抑制活性。采用凝胶过滤层析和反相高效液相色谱对具有抗氧化活性和DPP-IV抑制活性的酶解物进行三层分离纯化。采用LC-MS/MS测定氨基酸序列。合成鉴定出的氨基酸序列,测定其抗氧化和抑制DPP-IV活性。结果表明,N3-8的14个多肽中有3个具有较高的抗氧化活性。其中,肽DDQNPHSSN具有较高的抗氧化活性和DPP-IV抑制活性。当浓度为1 mg/mL时,ABTS自由基清除率、DPPH自由基清除率和还原力均较好,分别达到91.42%、88.76%和0.637%,DPP-IV抑制活性达到66.28%。乳清蛋白酶水解物有望作为功能肽进行商业开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信