{"title":"Dextran-induced modifications of calcium carbonate particles precipitated during carbonatation","authors":"K. Abraham, Liza Splett, E. Flöter","doi":"10.36961/si23369","DOIUrl":null,"url":null,"abstract":"The effects of high and low molecular mass dextran (T2000 and T40) on the size and shape of particles precipitated during carbonatation and their correlation with filtration performances were key to this study. Varying contents of T2000 and T40 dextran in sugar solutions corresponding to DS contents of thin juice were investigated. For particle size and shape analysis, static image analysis and laser particle size analysis were used. Both methods, static image analysis and laser diffraction, revealed that the presence of T2000 and T40 dextran leads to a higher amount of large-sized particles at the expense of small-sized particles, indicating pronounced agglomeration. The additional evaluation of shape parameters (circularity, roundness, solidity) obtained from static image analysis indicates that the agglomeration is oriented in the absence and in the presence of lower T40 dextran levels. Besides, non-oriented agglomeration, resulting in more round agglomerates with smoother surfaces, was found for samples loaded with T2000 dextran and high T40 dextran levels. Only the latter samples have shown to negatively affect the filtration performance. Thus, in the presence of T2000 dextran and high T40 dextran levels, the filtration was hampered. This appears to be mainly caused by a tighter packing of more round calcium carbonate agglomerates in the porous structure of the filter cake.","PeriodicalId":54362,"journal":{"name":"Sugar Industry-Zuckerindustrie","volume":"892 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sugar Industry-Zuckerindustrie","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.36961/si23369","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of high and low molecular mass dextran (T2000 and T40) on the size and shape of particles precipitated during carbonatation and their correlation with filtration performances were key to this study. Varying contents of T2000 and T40 dextran in sugar solutions corresponding to DS contents of thin juice were investigated. For particle size and shape analysis, static image analysis and laser particle size analysis were used. Both methods, static image analysis and laser diffraction, revealed that the presence of T2000 and T40 dextran leads to a higher amount of large-sized particles at the expense of small-sized particles, indicating pronounced agglomeration. The additional evaluation of shape parameters (circularity, roundness, solidity) obtained from static image analysis indicates that the agglomeration is oriented in the absence and in the presence of lower T40 dextran levels. Besides, non-oriented agglomeration, resulting in more round agglomerates with smoother surfaces, was found for samples loaded with T2000 dextran and high T40 dextran levels. Only the latter samples have shown to negatively affect the filtration performance. Thus, in the presence of T2000 dextran and high T40 dextran levels, the filtration was hampered. This appears to be mainly caused by a tighter packing of more round calcium carbonate agglomerates in the porous structure of the filter cake.
期刊介绍:
Sugar Industry / Zuckerindustrie accepts original papers (research reports), review articles, and short communications on all the aspects implied by the journals title and subtitle.