K. Shinohara, D. Regan, A. Corrion, D. Brown, Y. Tang, J. Wong, G. Candia, A. Schmitz, H. Fung, S. Kim, M. Micovic
{"title":"Self-aligned-gate GaN-HEMTs with heavily-doped n+-GaN ohmic contacts to 2DEG","authors":"K. Shinohara, D. Regan, A. Corrion, D. Brown, Y. Tang, J. Wong, G. Candia, A. Schmitz, H. Fung, S. Kim, M. Micovic","doi":"10.1109/IEDM.2012.6479113","DOIUrl":null,"url":null,"abstract":"We report record DC and RF performance obtained in deeply-scaled self-aligned-gate GaN-HEMTs with heavily-doped n<sup>+</sup>-GaN ohmic contacts to two-dimensional electron-gas (2DEG). High density-of-states of three-dimensional (3D) n<sup>+</sup>-GaN source near the gate mitigates “source-starvation,” resulting in a dramatic increase in a maximum drain current (I<sub>dmax</sub>) and a transconductance (g<sub>m</sub>). 20-nm-gate D-mode HEMTs with a 40-nm gate-source (and gate-drain) distance exhibited a record-low R<sub>on</sub> of 0.23 Ω·mm, a record-high I<sub>dmax</sub> of >4 A/mm, and a broad g<sub>m</sub> curve of >1 S/mm over a wide range of I<sub>ds</sub> from 0.5 to 3.5 A/mm. Furthermore, 20-nm-gate E-mode HEMTs with an increased L<sub>sw</sub> of 70 nm demonstrated a simultaneous f<sub>T</sub>/f<sub>max</sub> of 342/518 GHz with an off-state breakdown voltage of 14V.","PeriodicalId":6376,"journal":{"name":"2012 International Electron Devices Meeting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2012.6479113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87
Abstract
We report record DC and RF performance obtained in deeply-scaled self-aligned-gate GaN-HEMTs with heavily-doped n+-GaN ohmic contacts to two-dimensional electron-gas (2DEG). High density-of-states of three-dimensional (3D) n+-GaN source near the gate mitigates “source-starvation,” resulting in a dramatic increase in a maximum drain current (Idmax) and a transconductance (gm). 20-nm-gate D-mode HEMTs with a 40-nm gate-source (and gate-drain) distance exhibited a record-low Ron of 0.23 Ω·mm, a record-high Idmax of >4 A/mm, and a broad gm curve of >1 S/mm over a wide range of Ids from 0.5 to 3.5 A/mm. Furthermore, 20-nm-gate E-mode HEMTs with an increased Lsw of 70 nm demonstrated a simultaneous fT/fmax of 342/518 GHz with an off-state breakdown voltage of 14V.