A NoC-Based Spatial DNN Inference Accelerator With Memory-Friendly Dataflow

IF 1.9 4区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Lingxiao Zhu, Wenjie Fan, Chenyang Dai, Shize Zhou, Yongqi Xue, Zhonghai Lu, Li Li, Yuxiang Fu
{"title":"A NoC-Based Spatial DNN Inference Accelerator With Memory-Friendly Dataflow","authors":"Lingxiao Zhu, Wenjie Fan, Chenyang Dai, Shize Zhou, Yongqi Xue, Zhonghai Lu, Li Li, Yuxiang Fu","doi":"10.1109/MDAT.2023.3310199","DOIUrl":null,"url":null,"abstract":"Editor’s notes: This article addresses the challenges of excessive storage overhead and the absence of sparsity-aware design in Network-on-Chip (NoC)-based spatial deep neural network accelerators. The authors present a prototype chip that outperforms existing accelerators in both energy and area efficiency, demonstrated on TSMC 28-nm process technology. —Mahdi Nikdast, Colorado State University, USA —Miquel Moreto, Barcelona Supercomputing Center, Spain —Masoumeh (Azin) Ebrahimi, KTH Royal Institute of Technology, Sweden —Sujay Deb, IIIT Delhi, India","PeriodicalId":48917,"journal":{"name":"IEEE Design & Test","volume":"67 1","pages":"39-50"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Design & Test","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/MDAT.2023.3310199","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Editor’s notes: This article addresses the challenges of excessive storage overhead and the absence of sparsity-aware design in Network-on-Chip (NoC)-based spatial deep neural network accelerators. The authors present a prototype chip that outperforms existing accelerators in both energy and area efficiency, demonstrated on TSMC 28-nm process technology. —Mahdi Nikdast, Colorado State University, USA —Miquel Moreto, Barcelona Supercomputing Center, Spain —Masoumeh (Azin) Ebrahimi, KTH Royal Institute of Technology, Sweden —Sujay Deb, IIIT Delhi, India
具有内存友好数据流的基于noc的空间DNN推理加速器
编者注:本文解决了基于片上网络(NoC)的空间深度神经网络加速器中存储开销过大和缺乏稀疏感知设计的挑战。作者提出了一种原型芯片,在能量和面积效率上都优于现有的加速器,并在台积电28纳米工艺上进行了演示。-Mahdi Nikdast,美国科罗拉多州立大学-Miquel Moreto,西班牙巴塞罗那超级计算中心-Masoumeh (Azin) Ebrahimi,瑞典皇家理工学院-Sujay Deb,印度德里IIIT
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Design & Test
IEEE Design & Test COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
3.80
自引率
5.00%
发文量
98
期刊介绍: IEEE Design & Test offers original works describing the models, methods, and tools used to design and test microelectronic systems from devices and circuits to complete systems-on-chip and embedded software. The magazine focuses on current and near-future practice, and includes tutorials, how-to articles, and real-world case studies. The magazine seeks to bring to its readers not only important technology advances but also technology leaders, their perspectives through its columns, interviews, and roundtable discussions. Topics include semiconductor IC design, semiconductor intellectual property blocks, design, verification and test technology, design for manufacturing and yield, embedded software and systems, low-power and energy-efficient design, electronic design automation tools, practical technology, and standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信