Yield prediction using critical area analysis with inline defect data

C. Zhou, R. Ross, C. Vickery, B. Metteer, S. Gross, D. Verret
{"title":"Yield prediction using critical area analysis with inline defect data","authors":"C. Zhou, R. Ross, C. Vickery, B. Metteer, S. Gross, D. Verret","doi":"10.1109/ASMC.2002.1001579","DOIUrl":null,"url":null,"abstract":"This paper presents methodologies for using critical area analysis with inline defect data to predict random defect limited yield and for partitioning yield losses by process step. The procedure involves (1) calculating critical areas, (2) modeling defect size distributions, and (3) combining critical area information and defect size distributions to estimate yield loss. We introduce a method to model defect size distribution from inline defect data. We develop two yield prediction methods that can overcome the difficulties caused by the inaccuracies in determining defect size when using laser scatterometry detection. We compare the predicted yield with the actual yield and show that the two are in good agreement.","PeriodicalId":64779,"journal":{"name":"半导体技术","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"半导体技术","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ASMC.2002.1001579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper presents methodologies for using critical area analysis with inline defect data to predict random defect limited yield and for partitioning yield losses by process step. The procedure involves (1) calculating critical areas, (2) modeling defect size distributions, and (3) combining critical area information and defect size distributions to estimate yield loss. We introduce a method to model defect size distribution from inline defect data. We develop two yield prediction methods that can overcome the difficulties caused by the inaccuracies in determining defect size when using laser scatterometry detection. We compare the predicted yield with the actual yield and show that the two are in good agreement.
利用关键区域分析和内联缺陷数据进行良率预测
本文提出了利用内联缺陷数据的临界区域分析来预测随机缺陷有限良率和按工艺步骤划分良率损失的方法。该过程包括(1)计算临界区域,(2)建模缺陷尺寸分布,以及(3)结合临界区域信息和缺陷尺寸分布来估计良率损失。介绍了一种利用内联缺陷数据对缺陷尺寸分布进行建模的方法。我们开发了两种良率预测方法,克服了激光散射法检测缺陷尺寸不准确所带来的困难。我们将预测产率与实际产率进行了比较,结果表明两者吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8436
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信