{"title":"An intelligent fast controller for autonomous wheeled robot path navigation in challenging environments","authors":"Subhradip Mukherjee, R. Kumar, Siddhanta Borah","doi":"10.1108/ir-01-2022-0026","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to incorporate one intelligent particle swarm optimization (IPSO) controller to realize an optimum path in unknown environments. In this paper, the fitness function of IPSO is designed with intelligent design parameters, solving the path navigation problem of an autonomous wheeled robot towards the target point by avoiding obstacles in any unknown environment.\n\n\nDesign/methodology/approach\nThis controller depends on randomly oriented positions with all other position information and a fitness function. Evaluating the position’s best values, this study gets the local best values, and finally, the global best value is updated as the current value after comparing the local best values.\n\n\nFindings\nThe path navigation of the proposed controller has been compared with particle swarm optimization algorithm, BAT algorithm, flower pollination algorithm, invasive weed algorithm and genetic algorithm in multiple challenging environments. The proposed controller shows the percent deviation in path length near 14.54% and the percent deviation in travel time near 4% after the simulation. IPSO is applied to optimize said parameters for path navigation of the wheeled robot in different simulation environments.\n\n\nOriginality/value\nA hardware model with a 32-bit ARM board interfaced with a global positioning system (GPS) module, an ultrasonic module and ZigBee wireless communication module is designed to implement IPSO. In real-time, the IPSO controller shows the percent deviation in path length near 9%.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-01-2022-0026","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose
This paper aims to incorporate one intelligent particle swarm optimization (IPSO) controller to realize an optimum path in unknown environments. In this paper, the fitness function of IPSO is designed with intelligent design parameters, solving the path navigation problem of an autonomous wheeled robot towards the target point by avoiding obstacles in any unknown environment.
Design/methodology/approach
This controller depends on randomly oriented positions with all other position information and a fitness function. Evaluating the position’s best values, this study gets the local best values, and finally, the global best value is updated as the current value after comparing the local best values.
Findings
The path navigation of the proposed controller has been compared with particle swarm optimization algorithm, BAT algorithm, flower pollination algorithm, invasive weed algorithm and genetic algorithm in multiple challenging environments. The proposed controller shows the percent deviation in path length near 14.54% and the percent deviation in travel time near 4% after the simulation. IPSO is applied to optimize said parameters for path navigation of the wheeled robot in different simulation environments.
Originality/value
A hardware model with a 32-bit ARM board interfaced with a global positioning system (GPS) module, an ultrasonic module and ZigBee wireless communication module is designed to implement IPSO. In real-time, the IPSO controller shows the percent deviation in path length near 9%.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.