Muhammad Zeshan Arshad, Muhammad Zafar Iqbal, Festus Were, Ramy Aldallal, Fathy H. Riad, M. E. Bakr, Yusra A. Tashkandy, Eslam Hussam, Ahmed M. Gemeay
{"title":"An Alternative Statistical Model to Analysis Pearl Millet (Bajra) Yield in Province Punjab and Pakistan","authors":"Muhammad Zeshan Arshad, Muhammad Zafar Iqbal, Festus Were, Ramy Aldallal, Fathy H. Riad, M. E. Bakr, Yusra A. Tashkandy, Eslam Hussam, Ahmed M. Gemeay","doi":"10.1155/2023/8713812","DOIUrl":null,"url":null,"abstract":"<div>\n <p><i>Background</i>. A country’s agriculture reflects a backbone and performs a vital part in the betterment of the economy and individuals. Facts and figures of the agriculture sector offer a solid foundation and factual pathway intended for upcoming decisions in favor of a country. Accordingly, the probability models have a more significant influence not only in reliability engineering, hydrology, ecology, and medicine but also in agriculture sciences. <i>Objective</i>. The primary objective of this study is to propose a reliable and efficient model for pearl millet yield analysis, thereby empowering decision-makers to make informed decisions about their farming practices. With the successful implementation of this model, farmers can potentially increase their pearl millet yield, leading to higher incomes and improved livelihoods for the rural population of Pakistan. <i>Model</i>. This study proposes a novel probability model, namely, the alpha transformed odd exponential power function (ATOE-PF) distribution, for analyzing pearl millet yield in Punjab, Pakistan. <i>Data</i>. For data collection, two secondary data sets are explored that are electronically available on the site of the Directorate of Agriculture (Economics and Marketing) Punjab, Lahore, Pakistan. <i>Results</i>. The maximum likelihood estimation technique is used for estimating the model parameters. For the selection of a better fit model, we follow some accredited goodness of fit tests. The efficiency and applicability of the ATOE-PF distribution are discussed over the province of Punjab (with RMSE = 4.9176) and Pakistan (with RMSE = 4.5849). Better estimates and closest fit to data among the well-established neighboring models offer robust evidence in support of ATOE-PF distribution as well.</p>\n </div>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":"2023 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/8713812","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/8713812","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background. A country’s agriculture reflects a backbone and performs a vital part in the betterment of the economy and individuals. Facts and figures of the agriculture sector offer a solid foundation and factual pathway intended for upcoming decisions in favor of a country. Accordingly, the probability models have a more significant influence not only in reliability engineering, hydrology, ecology, and medicine but also in agriculture sciences. Objective. The primary objective of this study is to propose a reliable and efficient model for pearl millet yield analysis, thereby empowering decision-makers to make informed decisions about their farming practices. With the successful implementation of this model, farmers can potentially increase their pearl millet yield, leading to higher incomes and improved livelihoods for the rural population of Pakistan. Model. This study proposes a novel probability model, namely, the alpha transformed odd exponential power function (ATOE-PF) distribution, for analyzing pearl millet yield in Punjab, Pakistan. Data. For data collection, two secondary data sets are explored that are electronically available on the site of the Directorate of Agriculture (Economics and Marketing) Punjab, Lahore, Pakistan. Results. The maximum likelihood estimation technique is used for estimating the model parameters. For the selection of a better fit model, we follow some accredited goodness of fit tests. The efficiency and applicability of the ATOE-PF distribution are discussed over the province of Punjab (with RMSE = 4.9176) and Pakistan (with RMSE = 4.5849). Better estimates and closest fit to data among the well-established neighboring models offer robust evidence in support of ATOE-PF distribution as well.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.