E. Jo, Yunsung Kang, Sangjun Sim, Jungwook Choi, Jongbaeg Kim
{"title":"Microelectromechanical Switch with Carbon Nanotube Arrays for High-Temperature Operation","authors":"E. Jo, Yunsung Kang, Sangjun Sim, Jungwook Choi, Jongbaeg Kim","doi":"10.1109/MEMS46641.2020.9056285","DOIUrl":null,"url":null,"abstract":"This paper reports a micro-electro-mechanical (MEM) switch based on carbon nanotube (CNT) array-to-CNT array contact operating at high temperatures. The outstanding interfacial thermal stability of the CNT arrays allowed the successful operation of the switch at 300 °C, under which condition the solid-state transistors or metal-based MEM switches would not be functioning. Our device operated as an n-type MEM switch by forming an air gap based on the intended stiction induced by the wet processes and the recovery after the synthesis of CNTs. Additionally, we investigated the possible degradation in switching behavior and the change in contact resistance at various temperatures. The switch exhibits stable and repetitive operations over 1,000 cycles at 300 °C under hot-switching conditions in nitrogen at atmospheric pressure without a significant change in the switching characteristics.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"18 1","pages":"574-577"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports a micro-electro-mechanical (MEM) switch based on carbon nanotube (CNT) array-to-CNT array contact operating at high temperatures. The outstanding interfacial thermal stability of the CNT arrays allowed the successful operation of the switch at 300 °C, under which condition the solid-state transistors or metal-based MEM switches would not be functioning. Our device operated as an n-type MEM switch by forming an air gap based on the intended stiction induced by the wet processes and the recovery after the synthesis of CNTs. Additionally, we investigated the possible degradation in switching behavior and the change in contact resistance at various temperatures. The switch exhibits stable and repetitive operations over 1,000 cycles at 300 °C under hot-switching conditions in nitrogen at atmospheric pressure without a significant change in the switching characteristics.