{"title":"A 15.5-ENOB 335 mVPP-Linear-Input-Range 4.7-GΩ-Input-Impedance CT-ΔΣM Analog Front-End With Embedded Low-Frequency Chopping","authors":"Yijie Li;Weiqi Zhi;Yuying Li;Jianhong Zhou;Zhiliang Hong;Jiawei Xu","doi":"10.1109/LSSC.2023.3318815","DOIUrl":null,"url":null,"abstract":"This article presents a second-order continuous-time delta-sigma (CT-\n<inline-formula> <tex-math>$\\Delta \\Sigma $ </tex-math></inline-formula>\n)-based analog front-end (AFE) for biopotential sensor interfaces. High linearity is achieved by using a current balanced \n<inline-formula> <tex-math>$G_{m,1}$ </tex-math></inline-formula>\n input stage with gain-boosting and cascode techniques. Low-frequency chopping embedded in gain-boosting OTAs breaks the limitation of chopping frequency in conventional CT-\n<inline-formula> <tex-math>$\\Delta \\Sigma $ </tex-math></inline-formula>\n ADCs and mitigates flicker noise without reducing the input impedance. In the second stage, the closed-loop \n<inline-formula> <tex-math>$G_{m,2}$ </tex-math></inline-formula>\n-OTA-C proportional integrator (PI) relaxes the linearity requirements of the OTA and eliminates the additional active adder. Fabricated in a standard 0.18-\n<inline-formula> <tex-math>$\\mu \\text{m}$ </tex-math></inline-formula>\n CMOS technology, this direct-digitization AFE achieves 94.9-dB peak SNDR, \n<inline-formula> <tex-math>$335 \\rm mV_{pp}$ </tex-math></inline-formula>\n linear input range, and 4.7-\n<inline-formula> <tex-math>$\\text{G}\\Omega $ </tex-math></inline-formula>\n input impedance at 50 Hz with \n<inline-formula> <tex-math>$64\\times $ </tex-math></inline-formula>\n reduction in the chopping frequency.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"6 ","pages":"265-268"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10261423/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a second-order continuous-time delta-sigma (CT-
$\Delta \Sigma $
)-based analog front-end (AFE) for biopotential sensor interfaces. High linearity is achieved by using a current balanced
$G_{m,1}$
input stage with gain-boosting and cascode techniques. Low-frequency chopping embedded in gain-boosting OTAs breaks the limitation of chopping frequency in conventional CT-
$\Delta \Sigma $
ADCs and mitigates flicker noise without reducing the input impedance. In the second stage, the closed-loop
$G_{m,2}$
-OTA-C proportional integrator (PI) relaxes the linearity requirements of the OTA and eliminates the additional active adder. Fabricated in a standard 0.18-
$\mu \text{m}$
CMOS technology, this direct-digitization AFE achieves 94.9-dB peak SNDR,
$335 \rm mV_{pp}$
linear input range, and 4.7-
$\text{G}\Omega $
input impedance at 50 Hz with
$64\times $
reduction in the chopping frequency.