A 4-to-42-V Input 3.3-V Output Self-Biased DC–DC Buck Converter Featuring Leakage-Emulated Bootstrap Voltage Refresher and Anti-Deadlock

IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Heejun Lee;Hyunki Han;Hyun-Sik Kim
{"title":"A 4-to-42-V Input 3.3-V Output Self-Biased DC–DC Buck Converter Featuring Leakage-Emulated Bootstrap Voltage Refresher and Anti-Deadlock","authors":"Heejun Lee;Hyunki Han;Hyun-Sik Kim","doi":"10.1109/LSSC.2023.3314795","DOIUrl":null,"url":null,"abstract":"This letter presents a 4-to-42-V input and 3.3-V output dc–dc buck converter for battery-powered automotive uses. Pulse-frequency modulation (PFM) is a common scheme employed to reduce quiescent current \n<inline-formula> <tex-math>$(I_{Q})$ </tex-math></inline-formula>\n and mitigate battery drain. However, sustaining the bootstrap voltage \n<inline-formula> <tex-math>$(V_{B})$ </tex-math></inline-formula>\n, essential for activating power switches, becomes arduous at elevated temperatures due to significant leakage currents, particularly when the switching frequency is low in no-load scenarios. To address this issue, this letter proposes a leakage-emulating oscillator-based (LEOB) refresher that stabilizes \n<inline-formula> <tex-math>$V_{B}$ </tex-math></inline-formula>\n, even at temperatures as high as +125 °C. Additionally, an anti-deadlock self-bias supply is presented to further reduce \n<inline-formula> <tex-math>$I_{Q}$ </tex-math></inline-formula>\n while ensuring fault tolerance. The chip, fabricated in a 180-nm BCD process, exhibits a low \n<inline-formula> <tex-math>$I_{Q}$ </tex-math></inline-formula>\n of 3.2 \n<inline-formula> <tex-math>$\\mu \\text{A}$ </tex-math></inline-formula>\n and a peak efficiency of 95.5% (93.3%) at \n<inline-formula> <tex-math>$V_{\\mathrm{ IN}}\\,\\,=$ </tex-math></inline-formula>\n 24 V (42 V), with demonstrated stability of \n<inline-formula> <tex-math>$V_{B}$ </tex-math></inline-formula>\n from −40 °C to +125 °C.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"6 ","pages":"261-264"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10250866/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents a 4-to-42-V input and 3.3-V output dc–dc buck converter for battery-powered automotive uses. Pulse-frequency modulation (PFM) is a common scheme employed to reduce quiescent current $(I_{Q})$ and mitigate battery drain. However, sustaining the bootstrap voltage $(V_{B})$ , essential for activating power switches, becomes arduous at elevated temperatures due to significant leakage currents, particularly when the switching frequency is low in no-load scenarios. To address this issue, this letter proposes a leakage-emulating oscillator-based (LEOB) refresher that stabilizes $V_{B}$ , even at temperatures as high as +125 °C. Additionally, an anti-deadlock self-bias supply is presented to further reduce $I_{Q}$ while ensuring fault tolerance. The chip, fabricated in a 180-nm BCD process, exhibits a low $I_{Q}$ of 3.2 $\mu \text{A}$ and a peak efficiency of 95.5% (93.3%) at $V_{\mathrm{ IN}}\,\,=$ 24 V (42 V), with demonstrated stability of $V_{B}$ from −40 °C to +125 °C.
一种具有泄漏模拟自举电压刷新器和防死锁功能的4至42-V输入3.3 V输出自偏压DC-DC降压转换器
这封信介绍了一种用于电池供电汽车的4至42伏输入和3.3伏输出直流-直流降压转换器。脉冲频率调制(PFM)是用于减少静态电流$(I_{Q})$和减轻电池消耗的常见方案。然而,由于显著的漏电流,特别是当开关频率在空载情况下较低时,维持自举电压$(V_{B})$在升高的温度下变得困难,这对于激活功率开关是必不可少的。为了解决这个问题,这封信提出了一种基于泄漏模拟振荡器(LEOB)的刷新器,即使在高达+125°C的温度下也能稳定$V_{B}$。此外,还提出了一种抗死锁自偏置电源,以进一步降低$I_{Q}$,同时确保容错性。该芯片采用180nm BCD工艺制造,在$V_{\mathrm{in}}\,=$24V(42V)时表现出3.2$\mu\text{a}$的低$I_{Q}$和95.5%(93.3%)的峰值效率,在−40°C至+125°C时表现出$V_。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信