Kyoungchoul Koo, Yujeong Shim, C. Yoon, Jaemin Kim, Jeongsik Yoo, J. Pak, Joungho Kim
{"title":"Modeling and Analysis of Power Supply Noise Imbalance on Ultra High Frequency Differential Low Noise Amplifiers in a System-in-Package","authors":"Kyoungchoul Koo, Yujeong Shim, C. Yoon, Jaemin Kim, Jeongsik Yoo, J. Pak, Joungho Kim","doi":"10.1109/TADVP.2010.2047395","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the power supply noise imbalance and its effects on simultaneous switching noise coupling to an ultra high frequency differential low noise amplifier (LNA) in a system-in-package (SiP) through an off-chip power distribution network (PDN). On and off-chip sources of power supply noise imbalance in a LNA in a SiP were analyzed. A simultaneous switching noise coupling coefficient for the differential LNA output caused by power supply noise imbalance was simulated through co-modeling a hierarchical on and off-chip PDN. The simulation results were validated by measuring the simultaneous switching noise coupling voltage at the differential LNA output. Further validation of four types of a LNA with different PDN designs demonstrates that simultaneous switching noise coupling to the differential LNA output caused by power supply noise imbalance highly depends on the design of the PDN of the SiP.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"46 1","pages":"602-616"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2047395","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Advanced Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TADVP.2010.2047395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper, we analyze the power supply noise imbalance and its effects on simultaneous switching noise coupling to an ultra high frequency differential low noise amplifier (LNA) in a system-in-package (SiP) through an off-chip power distribution network (PDN). On and off-chip sources of power supply noise imbalance in a LNA in a SiP were analyzed. A simultaneous switching noise coupling coefficient for the differential LNA output caused by power supply noise imbalance was simulated through co-modeling a hierarchical on and off-chip PDN. The simulation results were validated by measuring the simultaneous switching noise coupling voltage at the differential LNA output. Further validation of four types of a LNA with different PDN designs demonstrates that simultaneous switching noise coupling to the differential LNA output caused by power supply noise imbalance highly depends on the design of the PDN of the SiP.