A Multidimensional Krylov Reduction Technique With Constraint Variables to Model Nonlinear Distributed Networks

E. Rasekh, A. Dounavis
{"title":"A Multidimensional Krylov Reduction Technique With Constraint Variables to Model Nonlinear Distributed Networks","authors":"E. Rasekh, A. Dounavis","doi":"10.1109/TADVP.2010.2042808","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient model order reduction algorithm for simulating large interconnect networks with many nonlinear elements. The proposed methodology is based on a multidimensional subspace method and uses constraint equations to link the nonlinear elements and biasing sources to the reduced order model. This approach significantly improves the simulation time of distributed nonlinear systems, since additional ports are not required to link the nonlinear elements to the reduced order model, yielding appreciable savings in the size of the reduced order model and computational time. Numerical examples are provided to illustrate the validity of the proposed algorithm.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"738-746"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2042808","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Advanced Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TADVP.2010.2042808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an efficient model order reduction algorithm for simulating large interconnect networks with many nonlinear elements. The proposed methodology is based on a multidimensional subspace method and uses constraint equations to link the nonlinear elements and biasing sources to the reduced order model. This approach significantly improves the simulation time of distributed nonlinear systems, since additional ports are not required to link the nonlinear elements to the reduced order model, yielding appreciable savings in the size of the reduced order model and computational time. Numerical examples are provided to illustrate the validity of the proposed algorithm.
非线性分布式网络的约束变量多维Krylov约简技术
本文提出了一种有效的模型降阶算法,用于模拟具有许多非线性元素的大型互连网络。该方法基于多维子空间方法,利用约束方程将非线性元素和偏源与降阶模型联系起来。这种方法显著改善了分布式非线性系统的模拟时间,因为不需要额外的端口将非线性元素连接到降阶模型,从而在降阶模型的大小和计算时间方面产生了可观的节省。数值算例说明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Advanced Packaging
IEEE Transactions on Advanced Packaging 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
6 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信