{"title":"Design and Implementation of a Novel Hybrid Photonic Crystal Power/Ground Layer for Broadband Power Noise Suppression","authors":"Guanqun Wu, Yi-Che Chen, Tzong-Lin Wu","doi":"10.1109/TADVP.2009.2034334","DOIUrl":null,"url":null,"abstract":"By embedding periodically high-K rods in the package substrate, a hybrid photonic crystal power/ground layers (PCPL) is proposed with stopband enhancement for power/ground noise suppression. The hybrid PCPL consists of two different lattice structures, which have the same pitch but different radii of the high-K rods. Using the gap map of the photonic crystal lattice, the enhanced stopband can be synthesized by designing these two different lattices with compensated stopband. An implementation approach, which is compatible to the standard fabrication process of package or printed circuit board (PCB), is also proposed in this paper. The high-K rods are considered as surface mount technology (SMT)-like components and ring-shaped soldering pads with through-hole-via connecting to power/ground planes are designed on the package substrate. A test sample of the hybrid PCPL is fabricated and measured. A wide stopband from 3.2 to 9.5 GHz is achieved with 30 dB of noise suppression in average. This enhanced stopband is consistent with the prediction both by gap map synthesis and full-wave simulation. The hybrid PCPL is applied in a package substrate with voltage-controlled oscillator (VCO) circuit and excellent noise suppression performance is demonstrated.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"206-211"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2009.2034334","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Advanced Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TADVP.2009.2034334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
By embedding periodically high-K rods in the package substrate, a hybrid photonic crystal power/ground layers (PCPL) is proposed with stopband enhancement for power/ground noise suppression. The hybrid PCPL consists of two different lattice structures, which have the same pitch but different radii of the high-K rods. Using the gap map of the photonic crystal lattice, the enhanced stopband can be synthesized by designing these two different lattices with compensated stopband. An implementation approach, which is compatible to the standard fabrication process of package or printed circuit board (PCB), is also proposed in this paper. The high-K rods are considered as surface mount technology (SMT)-like components and ring-shaped soldering pads with through-hole-via connecting to power/ground planes are designed on the package substrate. A test sample of the hybrid PCPL is fabricated and measured. A wide stopband from 3.2 to 9.5 GHz is achieved with 30 dB of noise suppression in average. This enhanced stopband is consistent with the prediction both by gap map synthesis and full-wave simulation. The hybrid PCPL is applied in a package substrate with voltage-controlled oscillator (VCO) circuit and excellent noise suppression performance is demonstrated.