{"title":"Wideband Circuit Model for Planar EBG Structures","authors":"B. Mohajer-Iravani, O. Ramahi","doi":"10.1109/TADVP.2009.2021156","DOIUrl":null,"url":null,"abstract":"In this paper, we present a comprehensive equivalent circuit model to accurately characterize an important class of electromagnetic bandgap (EBG) structures over a wide range of frequencies. The model is developed based on a combination of lumped elements and transmission lines. The model presented here predicts with high degree of accuracy the dispersion diagram over a wide band of frequencies. Since the circuit model can be simulated using SPICE-like simulation tools, optimization of EBG structures to meet specific engineering criteria can be performed with high efficiency, thus saving significant computation time and memory resources. The model was validated by comparison to full-wave simulation results.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"169-179"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2009.2021156","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Advanced Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TADVP.2009.2021156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
In this paper, we present a comprehensive equivalent circuit model to accurately characterize an important class of electromagnetic bandgap (EBG) structures over a wide range of frequencies. The model is developed based on a combination of lumped elements and transmission lines. The model presented here predicts with high degree of accuracy the dispersion diagram over a wide band of frequencies. Since the circuit model can be simulated using SPICE-like simulation tools, optimization of EBG structures to meet specific engineering criteria can be performed with high efficiency, thus saving significant computation time and memory resources. The model was validated by comparison to full-wave simulation results.