{"title":"An adaptive spatio-temporal neural network for PM2.5 concentration forecasting","authors":"Xiaoxia Zhang, Qixiong Li, Dong Liang","doi":"10.1007/s10462-023-10503-6","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate PM<sub>2.5</sub> concentration prediction is essential for environmental control management, therefore numerous air quality monitoring stations have been established, which generate multiple time series with spatio-temporal correlation. However, the statistical distribution of data from different monitoring stations varies widely, which needs to provide higher flexibility in the feature extraction stage. Moreover, the spatio-temporal correlation and mutation characteristics of the time series are difficult to capture. To this end, an adaptive spatio-temporal prediction network (ASTP-NET) is proposed, in which the encoder adaptively extracts the input data features, then captures the spatio-temporal dependencies and dynamic changes of the time series, the decoder part maps the encoded features into a predicted future time series representation, while an objective function is proposed to measure the overall fluctuations of the model’s multi-step prediction. In this paper, ASTP-NET is evaluated based on the Xi'an air quality dataset, and the results show that the model outperforms other baseline methods.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"56 12","pages":"14483 - 14510"},"PeriodicalIF":10.7000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-023-10503-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate PM2.5 concentration prediction is essential for environmental control management, therefore numerous air quality monitoring stations have been established, which generate multiple time series with spatio-temporal correlation. However, the statistical distribution of data from different monitoring stations varies widely, which needs to provide higher flexibility in the feature extraction stage. Moreover, the spatio-temporal correlation and mutation characteristics of the time series are difficult to capture. To this end, an adaptive spatio-temporal prediction network (ASTP-NET) is proposed, in which the encoder adaptively extracts the input data features, then captures the spatio-temporal dependencies and dynamic changes of the time series, the decoder part maps the encoded features into a predicted future time series representation, while an objective function is proposed to measure the overall fluctuations of the model’s multi-step prediction. In this paper, ASTP-NET is evaluated based on the Xi'an air quality dataset, and the results show that the model outperforms other baseline methods.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.