{"title":"Multi-scale Battery Modeling Method for Fault Diagnosis","authors":"Shichun Yang, Hanchao Cheng, Mingyue Wang, Meng Lyu, Xinlei Gao, Zhengjie Zhang, Rui Cao, Shen Li, Jiayuan Lin, Yang Hua, Xiaoyu Yan, Xinhua Liu","doi":"10.1007/s42154-022-00197-x","DOIUrl":null,"url":null,"abstract":"<div><p>Fault diagnosis is key to enhancing the performance and safety of battery storage systems. However, it is challenging to realize efficient fault diagnosis for lithium-ion batteries because the accuracy diagnostic algorithm is limited and the features of the different faults are similar. The model-based method has been widely used for degradation mechanism analysis, state estimation, and life prediction of lithium-ion battery systems due to the fast speed and high development efficiency. This paper reviews the mainstream modeling approaches used for battery diagnosis. First, a review of the battery’s degradation mechanisms and the external factors affecting the aging rate is presented. Second, the different modeling approaches are summarized, from microscopic to macroscopic scales, including density functional theory, molecular dynamics, X-ray computed tomography technology, electrochemical model, equivalent circuit model, distributed model and neural network algorithm. Subsequently, the advantages and disadvantages of these model approaches are discussed for fault detection and diagnosis of batteries in different application scenarios. Finally, the remaining challenges of model-based battery diagnosis and the future perspective of using cloud control and battery intelligent networking to enhance diagnostic performance are discussed.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"5 4","pages":"400 - 414"},"PeriodicalIF":4.8000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-022-00197-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6
Abstract
Fault diagnosis is key to enhancing the performance and safety of battery storage systems. However, it is challenging to realize efficient fault diagnosis for lithium-ion batteries because the accuracy diagnostic algorithm is limited and the features of the different faults are similar. The model-based method has been widely used for degradation mechanism analysis, state estimation, and life prediction of lithium-ion battery systems due to the fast speed and high development efficiency. This paper reviews the mainstream modeling approaches used for battery diagnosis. First, a review of the battery’s degradation mechanisms and the external factors affecting the aging rate is presented. Second, the different modeling approaches are summarized, from microscopic to macroscopic scales, including density functional theory, molecular dynamics, X-ray computed tomography technology, electrochemical model, equivalent circuit model, distributed model and neural network algorithm. Subsequently, the advantages and disadvantages of these model approaches are discussed for fault detection and diagnosis of batteries in different application scenarios. Finally, the remaining challenges of model-based battery diagnosis and the future perspective of using cloud control and battery intelligent networking to enhance diagnostic performance are discussed.
期刊介绍:
Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.