Review of Magnetic Tunnel Junctions for Stochastic Computing

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Brandon R. Zink;Yang Lv;Jian-Ping Wang
{"title":"Review of Magnetic Tunnel Junctions for Stochastic Computing","authors":"Brandon R. Zink;Yang Lv;Jian-Ping Wang","doi":"10.1109/JXCDC.2022.3227062","DOIUrl":null,"url":null,"abstract":"Modern computing schemes require large circuit areas and large energy consumption for neuromorphic computing applications, such as recognition, classification, and prediction. This is because these tasks require parallel processing on large datasets. Stochastic computing (SC) is a promising alternative to conventional binary computing schemes due to its low area cost, low processing power, and robustness to noise. However, the large area and energy costs for random number generation with CMOS-based circuits make SC impractical for most hardware implementations. For this reason, beyond-CMOS approaches to random number generation have been investigated in recent years. Spintronics is one of the most promising approaches due to the intrinsic stochasticity of the magnetic tunnel junction (MTJ). In this review article, we provide an overview of the literature published in recent years investigating the tunable, intrinsic stochasticity of MTJs and proposing practical methods for random number generation using spintronic hardware.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"8 2","pages":"173-184"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9998452/09976889.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9976889/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 6

Abstract

Modern computing schemes require large circuit areas and large energy consumption for neuromorphic computing applications, such as recognition, classification, and prediction. This is because these tasks require parallel processing on large datasets. Stochastic computing (SC) is a promising alternative to conventional binary computing schemes due to its low area cost, low processing power, and robustness to noise. However, the large area and energy costs for random number generation with CMOS-based circuits make SC impractical for most hardware implementations. For this reason, beyond-CMOS approaches to random number generation have been investigated in recent years. Spintronics is one of the most promising approaches due to the intrinsic stochasticity of the magnetic tunnel junction (MTJ). In this review article, we provide an overview of the literature published in recent years investigating the tunable, intrinsic stochasticity of MTJs and proposing practical methods for random number generation using spintronic hardware.
随机计算中磁隧道结的研究进展
现代计算方案对于神经形态计算应用,如识别、分类和预测,需要大的电路面积和大的能量消耗。这是因为这些任务需要在大型数据集上并行处理。随机计算(SC)由于其低面积成本、低处理能力和对噪声的鲁棒性,是传统二进制计算方案的一个很有前途的替代方案。然而,基于cmos电路的随机数生成的大面积和能源成本使得SC在大多数硬件实现中不切实际。由于这个原因,近年来研究了超越cmos的随机数生成方法。由于磁隧道结(MTJ)的固有随机性,自旋电子学是最有前途的方法之一。在这篇综述文章中,我们概述了近年来发表的研究mtj的可调谐、内在随机性的文献,并提出了使用自旋电子硬件产生随机数的实用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信