{"title":"Flat Ball: Dynamic topology for energy management of optical interconnection networks in data centers","authors":"Negar Rezaei, Somayyeh Koohi","doi":"10.1016/j.osn.2023.100730","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Cloud computing and web applications have further highlighted the need for powerful </span>data centers with large bandwidth and </span>low power consumption<span>. In order to provide such a large bandwidth, today's electronic data centers require high power levels. Furthermore, communications and devices are not always used to their full potential. Optical networks can be a proper option for data centers, as they can offer large and variable bandwidth with lower power consumption compared to their electronic counterparts. In this regard, a dynamic all-optical network architecture is proposed in this paper, with bandwidth reconfiguration capability and low latency to reduce energy consumption. This proposed architecture, called Flat Ball, offers </span></span>dynamic bandwidth<span> utilizing passive optical devices<span> with low power consumption and latency. Under realistic data center traffic scenarios, the latency of this network is up to 50% lower than its electrical counterpart, while providing a much higher throughput and consuming up to 60% less power.</span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"48 ","pages":"Article 100730"},"PeriodicalIF":1.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427723000012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Cloud computing and web applications have further highlighted the need for powerful data centers with large bandwidth and low power consumption. In order to provide such a large bandwidth, today's electronic data centers require high power levels. Furthermore, communications and devices are not always used to their full potential. Optical networks can be a proper option for data centers, as they can offer large and variable bandwidth with lower power consumption compared to their electronic counterparts. In this regard, a dynamic all-optical network architecture is proposed in this paper, with bandwidth reconfiguration capability and low latency to reduce energy consumption. This proposed architecture, called Flat Ball, offers dynamic bandwidth utilizing passive optical devices with low power consumption and latency. Under realistic data center traffic scenarios, the latency of this network is up to 50% lower than its electrical counterpart, while providing a much higher throughput and consuming up to 60% less power.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks