Segment frame replication and elimination for redundant routing provision in the FlexE-over-WDM networks

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiawei Zhang, Xuejing Gao, Kexin Wu, Yuefeng Ji
{"title":"Segment frame replication and elimination for redundant routing provision in the FlexE-over-WDM networks","authors":"Jiawei Zhang,&nbsp;Xuejing Gao,&nbsp;Kexin Wu,&nbsp;Yuefeng Ji","doi":"10.1016/j.osn.2022.100709","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible Ethernet (FlexE)-over-WDM is one of the promising technologies of 5G<span><span><span> transport networks that aims to provide a variety of Ethernet MAC rates over large capacity wavelength channels. Ultra-reliable communication is a key scenario of 5G, which poses a big challenge to the transport networks. To achieve ultra-reliability, frame replication and elimination for reliability (FRER) was proposed by IEEE. 802.1CB to provide redundant transmission in layer 2. However, previous studies of FRER considered to replicate MAC frames at source node and eliminate them at the destination, which may cause a waste of network resources, especially for the services that require different reliabilities in a condition of network with different </span>packet loss rates of link and node. To this end, we propose a novel redundant </span>routing scheme<span>, called segment FRER (S-FRER), to balance the reliability and network efficiency. And a FlexE group allocation scheme is coming with S-FRER to assign the Flexible Ethernet channels along the path. Two heuristic algorithms, which are end-to-end FRER (E-FRER) and ordinal FRER (O-FRER), are compared with S-FRER. Simulation results show that S-FRER can satisfy diverse reliability requirements of services, and the resource redundancy and equipment cost are condensed.We further take the resource utilization efficiency as the optimization goal, and propose a FlexE Group allocation strategy based on segmented frame repetition and elimination to realize the resource redistribution of service flows on redundant routes. The experimental results verify the effectiveness of the scheme in terms of resource utilization efficiency.</span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"47 ","pages":"Article 100709"},"PeriodicalIF":1.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427722000455","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible Ethernet (FlexE)-over-WDM is one of the promising technologies of 5G transport networks that aims to provide a variety of Ethernet MAC rates over large capacity wavelength channels. Ultra-reliable communication is a key scenario of 5G, which poses a big challenge to the transport networks. To achieve ultra-reliability, frame replication and elimination for reliability (FRER) was proposed by IEEE. 802.1CB to provide redundant transmission in layer 2. However, previous studies of FRER considered to replicate MAC frames at source node and eliminate them at the destination, which may cause a waste of network resources, especially for the services that require different reliabilities in a condition of network with different packet loss rates of link and node. To this end, we propose a novel redundant routing scheme, called segment FRER (S-FRER), to balance the reliability and network efficiency. And a FlexE group allocation scheme is coming with S-FRER to assign the Flexible Ethernet channels along the path. Two heuristic algorithms, which are end-to-end FRER (E-FRER) and ordinal FRER (O-FRER), are compared with S-FRER. Simulation results show that S-FRER can satisfy diverse reliability requirements of services, and the resource redundancy and equipment cost are condensed.We further take the resource utilization efficiency as the optimization goal, and propose a FlexE Group allocation strategy based on segmented frame repetition and elimination to realize the resource redistribution of service flows on redundant routes. The experimental results verify the effectiveness of the scheme in terms of resource utilization efficiency.

在flexible -over- wdm网络中为冗余路由提供的段帧复制和消除
WDM上的柔性以太网(FlexE)是5G传输网络中有前途的技术之一,旨在在大容量波长信道上提供各种以太网MAC速率。超可靠通信是5G的关键场景,这对传输网络构成了巨大挑战。为了实现超可靠性,IEEE提出了帧复制和消除可靠性(FRER)。802.1CB,以在第2层中提供冗余传输。然而,先前对FRER的研究考虑在源节点复制MAC帧并在目的地消除它们,这可能会造成网络资源的浪费,尤其是对于在链路和节点的丢包率不同的网络条件下需要不同可靠性的服务。为此,我们提出了一种新的冗余路由方案,称为分段FRER(S-FRER),以平衡可靠性和网络效率。FlexE组分配方案与S-FRER一起提供,用于分配路径上的灵活以太网信道。将端到端FRER(E-FRER)和有序FRER(O-FRER)两种启发式算法与S-FRER进行了比较。仿真结果表明,S-FRER可以满足多种业务的可靠性要求,并且可以节省资源冗余和设备成本。我们进一步以资源利用效率为优化目标,提出了一种基于分段帧重复和消除的FlexE组分配策略,以实现冗余路由上服务流的资源再分配。实验结果验证了该方案在资源利用效率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信