{"title":"Low-area architecture design of multi-mode activation functions with controllable maximum absolute error for neural network applications","authors":"Shu-Yen Lin, Jung-Chuan Chiang","doi":"10.1016/j.micpro.2023.104952","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In the development of the neural network<span><span> (NN), the activation function has become more and more important. The selection of the activation function indirectly affects the convergence speed and accuracy. This study proposes the multi-mode activation function design (MMAFD) based on the </span>least square method<span> (LSM) with a controllable maximum absolute error<span> (MAE) to support multiple activation functions. MMAFD selects the activation function to maintain the accuracy for different deep learning applications. MMAFD is implemented by TSMC 90 nm CMOS technology. In MMAFD, the </span></span></span></span>power consumption is 0.98 mW, the operational frequency is 250 MHz, and the area is 0.416mm². MMAFD is also verified by Xilinx Spartan-6 XC6SLX45 development board. Compared to the related works verified in the </span>FPGA boards, the LUTs and slices registers are reduced by up to 62.96 % and 73.90 %.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"103 ","pages":"Article 104952"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933123001965","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In the development of the neural network (NN), the activation function has become more and more important. The selection of the activation function indirectly affects the convergence speed and accuracy. This study proposes the multi-mode activation function design (MMAFD) based on the least square method (LSM) with a controllable maximum absolute error (MAE) to support multiple activation functions. MMAFD selects the activation function to maintain the accuracy for different deep learning applications. MMAFD is implemented by TSMC 90 nm CMOS technology. In MMAFD, the power consumption is 0.98 mW, the operational frequency is 250 MHz, and the area is 0.416mm². MMAFD is also verified by Xilinx Spartan-6 XC6SLX45 development board. Compared to the related works verified in the FPGA boards, the LUTs and slices registers are reduced by up to 62.96 % and 73.90 %.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.