Worst-case versus average-case design for estimation from partial pairwise comparisons

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
A. Pananjady, Cheng Mao, Vidya Muthukumar, M. Wainwright, T. Courtade
{"title":"Worst-case versus average-case design for estimation from partial pairwise comparisons","authors":"A. Pananjady, Cheng Mao, Vidya Muthukumar, M. Wainwright, T. Courtade","doi":"10.1214/19-aos1838","DOIUrl":null,"url":null,"abstract":"Pairwise comparison data arises in many domains, including tournament rankings, web search, and preference elicitation. Given noisy comparisons of a fixed subset of pairs of items, we study the problem of estimating the underlying comparison probabilities under the assumption of strong stochastic transitivity (SST). We also consider the noisy sorting subclass of the SST model. We show that when the assignment of items to the topology is arbitrary, these permutationbased models, unlike their parametric counterparts, do not admit consistent estimation for most comparison topologies used in practice. We then demonstrate that consistent estimation is possible when the assignment of items to the topology is randomized, thus establishing a dichotomy between worst-case and average-case designs. We propose two computationally efficient estimators in the average-case setting and analyze their risk, showing that it depends on the comparison topology only through the degree sequence of the topology. We also provide explicit classes of graphs for which the rates achieved by these estimators are optimal. Our results are corroborated by simulations on multiple comparison topologies.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aos1838","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 9

Abstract

Pairwise comparison data arises in many domains, including tournament rankings, web search, and preference elicitation. Given noisy comparisons of a fixed subset of pairs of items, we study the problem of estimating the underlying comparison probabilities under the assumption of strong stochastic transitivity (SST). We also consider the noisy sorting subclass of the SST model. We show that when the assignment of items to the topology is arbitrary, these permutationbased models, unlike their parametric counterparts, do not admit consistent estimation for most comparison topologies used in practice. We then demonstrate that consistent estimation is possible when the assignment of items to the topology is randomized, thus establishing a dichotomy between worst-case and average-case designs. We propose two computationally efficient estimators in the average-case setting and analyze their risk, showing that it depends on the comparison topology only through the degree sequence of the topology. We also provide explicit classes of graphs for which the rates achieved by these estimators are optimal. Our results are corroborated by simulations on multiple comparison topologies.
根据部分成对比较进行估计的最坏情况与平均情况设计
配对比较数据出现在许多领域,包括锦标赛排名、网络搜索和偏好启发。给定一个固定的项目对子集的噪声比较,我们研究了在强随机传递性(SST)假设下估计潜在比较概率的问题。我们还考虑SST模型的噪声排序子类。我们表明,当项目到拓扑的分配是任意的时,这些基于排列的模型与它们的参数对应模型不同,不允许对实践中使用的大多数比较拓扑进行一致的估计。然后,我们证明了当将项目分配到拓扑结构时,一致估计是可能的,从而在最坏情况和平均情况设计之间建立了二分法。我们在平均情况下提出了两个计算有效的估计量,并分析了它们的风险,表明它只通过拓扑的度序列依赖于比较拓扑。我们还提供了显式的图类,对于这些图类,由这些估计器实现的速率是最优的。我们的结果通过对多个比较拓扑的模拟得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信