{"title":"Improving displacement of silicon V-shaped electrothermal microactuator using platinum sputter deposition process","authors":"D. T. Nguyen, P. H. Pham, K. T. Hoang","doi":"10.1108/mi-05-2022-0076","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to propose a method to reduce the resistance of silicon-based V-shaped electrothermal microactuator (VEM) by applying a surface sputtering process.\n\n\nDesign/methodology/approach\nFour VEM’s samples have been fabricated using traditional silicon on insulator (SOI)-Micro-electro-mechanical System (MEMS) technology, three of them are coated with a thin layer of platinum on the top surface by sputtering technique with different sputtered times and the other is original. The displacements of the VEM are calculated and simulated to evaluate the advantages of sputtering method.\n\n\nFindings\nThe measured results show that the average resistance of the sputtered structures is approximately 1.16, 1.55 and 2.4 times lower than the non-sputtering sample corresponding to the sputtering time of 1.5, 3 and 6 min. Simulation results confirmed that the maximum displacement of the sputtered VEM is almost 1.45 times larger than non-sputtering one in the range of voltage from 8 to 20 V. The experimental displacements are also measured to validate the better performance of the sputtered samples.\n\n\nOriginality/value\nThe experimental results demonstrated the better displacement of the VEM structure after using the platinum sputtering process. The improvement can be considered and applied for enhancing displacement as well as decreasing the driving voltage of the other electrothermal microactuators like U- or Z-shaped structures while combining with the low-cost SOI-MEMS micromachining technology.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-05-2022-0076","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to propose a method to reduce the resistance of silicon-based V-shaped electrothermal microactuator (VEM) by applying a surface sputtering process.
Design/methodology/approach
Four VEM’s samples have been fabricated using traditional silicon on insulator (SOI)-Micro-electro-mechanical System (MEMS) technology, three of them are coated with a thin layer of platinum on the top surface by sputtering technique with different sputtered times and the other is original. The displacements of the VEM are calculated and simulated to evaluate the advantages of sputtering method.
Findings
The measured results show that the average resistance of the sputtered structures is approximately 1.16, 1.55 and 2.4 times lower than the non-sputtering sample corresponding to the sputtering time of 1.5, 3 and 6 min. Simulation results confirmed that the maximum displacement of the sputtered VEM is almost 1.45 times larger than non-sputtering one in the range of voltage from 8 to 20 V. The experimental displacements are also measured to validate the better performance of the sputtered samples.
Originality/value
The experimental results demonstrated the better displacement of the VEM structure after using the platinum sputtering process. The improvement can be considered and applied for enhancing displacement as well as decreasing the driving voltage of the other electrothermal microactuators like U- or Z-shaped structures while combining with the low-cost SOI-MEMS micromachining technology.
期刊介绍:
Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details.
Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are:
• Advanced packaging
• Ceramics
• Chip attachment
• Chip on board (COB)
• Chip scale packaging
• Flexible substrates
• MEMS
• Micro-circuit technology
• Microelectronic materials
• Multichip modules (MCMs)
• Organic/polymer electronics
• Printed electronics
• Semiconductor technology
• Solid state sensors
• Thermal management
• Thick/thin film technology
• Wafer scale processing.