R. Kakitani, C. A. P. Silva, B. Silva, Amauri Garcia, N. Cheung, J. Spinelli
{"title":"Local solidification thermal parameters affecting the eutectic extent in Sn-Cu and Sn-Bi solder alloys","authors":"R. Kakitani, C. A. P. Silva, B. Silva, Amauri Garcia, N. Cheung, J. Spinelli","doi":"10.1108/ssmt-01-2021-0003","DOIUrl":null,"url":null,"abstract":"\nPurpose\nOverall, selection maps about the extent of the eutectic growth projects the solidification velocities leading to given microstructures. This is because of limitations of most of the set of results when obtained for single thermal gradients within the experimental spectrum. In these cases, associations only with the solidification velocity could give the false impression that reaching a given velocity would be enough to reproduce a result. However, that velocity must necessarily be accompanied by a specific thermal gradient during transient solidification. Therefore, the purpose of this paper is to not only project velocity but also include the gradients acting for each velocity.\n\n\nDesign/methodology/approach\nCompilation of solidification velocity, v, thermal gradient, G, and cooling rate, Ṫ, data for Sn-Cu and Sn-Bi solder alloys of interest is presented. These data are placed in the form of coupled growth zones according to the correlated microstructures in the literature. In addition, results generated in this work for Sn-(0.5, 0.7, 2.0, 2.8)% Cu and Sn-(34, 52, 58)% Bi alloys solidified under non-stationary conditions are added.\n\n\nFindings\nWhen analyzing the cooling rate (Ṫ = G.v) and velocity separately, in or around the eutectic composition, a consensus cannot be reached on the resulting microstructure. The (v vs. G) + cooling rate diagrams allow comprehensive analyzes of the combined v and G effects on the subsequent microstructure of the Sn-Cu and Sn-Bi alloys.\n\n\nOriginality/value\nThe present paper is devoted to the establishment of (v vs. G) + cooling rate diagrams. These plots may allow comprehensive analyses of the combined v and G effects on the subsequent microstructure of the Sn-Cu and Sn-Bi alloys. This microstructure-processing mapping approach is promising to predict phase competition and resulting microstructures in soldering of Sn-Cu and Sn-Bi alloys. These two classes of alloys are of interest to the soldering industry, whereas manipulation of their microstructures is considered of utmost importance for the metallurgical quality of the product.\n","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ssmt-01-2021-0003","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose
Overall, selection maps about the extent of the eutectic growth projects the solidification velocities leading to given microstructures. This is because of limitations of most of the set of results when obtained for single thermal gradients within the experimental spectrum. In these cases, associations only with the solidification velocity could give the false impression that reaching a given velocity would be enough to reproduce a result. However, that velocity must necessarily be accompanied by a specific thermal gradient during transient solidification. Therefore, the purpose of this paper is to not only project velocity but also include the gradients acting for each velocity.
Design/methodology/approach
Compilation of solidification velocity, v, thermal gradient, G, and cooling rate, Ṫ, data for Sn-Cu and Sn-Bi solder alloys of interest is presented. These data are placed in the form of coupled growth zones according to the correlated microstructures in the literature. In addition, results generated in this work for Sn-(0.5, 0.7, 2.0, 2.8)% Cu and Sn-(34, 52, 58)% Bi alloys solidified under non-stationary conditions are added.
Findings
When analyzing the cooling rate (Ṫ = G.v) and velocity separately, in or around the eutectic composition, a consensus cannot be reached on the resulting microstructure. The (v vs. G) + cooling rate diagrams allow comprehensive analyzes of the combined v and G effects on the subsequent microstructure of the Sn-Cu and Sn-Bi alloys.
Originality/value
The present paper is devoted to the establishment of (v vs. G) + cooling rate diagrams. These plots may allow comprehensive analyses of the combined v and G effects on the subsequent microstructure of the Sn-Cu and Sn-Bi alloys. This microstructure-processing mapping approach is promising to predict phase competition and resulting microstructures in soldering of Sn-Cu and Sn-Bi alloys. These two classes of alloys are of interest to the soldering industry, whereas manipulation of their microstructures is considered of utmost importance for the metallurgical quality of the product.
期刊介绍:
Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International.
The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.