Dynamical System-Based Computational Models for Solving Combinatorial Optimization on Hypergraphs

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Mohammad Khairul Bashar;Antik Mallick;Avik W. Ghosh;Nikhil Shukla
{"title":"Dynamical System-Based Computational Models for Solving Combinatorial Optimization on Hypergraphs","authors":"Mohammad Khairul Bashar;Antik Mallick;Avik W. Ghosh;Nikhil Shukla","doi":"10.1109/JXCDC.2023.3235113","DOIUrl":null,"url":null,"abstract":"The intrinsic energy minimization in dynamical systems offers a valuable tool for minimizing the objective functions of computationally challenging problems in combinatorial optimization. However, most prior works have focused on mapping such dynamics to combinatorial optimization problems whose objective functions have quadratic degree [e.g., maximum cut (MaxCut)]; such problems can be represented and analyzed using graphs. However, the work on developing such models for problems that need objective functions with degree greater than two, and subsequently, entail the use of hypergraph data structures, is relatively sparse. In this work, we develop dynamical system-inspired computational models for several such problems. Specifically, we define the “energy function” for hypergraph-based combinatorial problems ranging from Boolean Satisfiability (SAT) and its variants to integer factorization, and subsequently, define the resulting system dynamics. We also show that the design approach is applicable to optimization problems with quadratic degree, and use it to develop a new dynamical system formulation for minimizing the Ising Hamiltonian. Our work not only expands on the scope of problems that can be directly mapped to, and solved using physics-inspired models, but also creates new opportunities to design high-performance accelerators for solving combinatorial optimization.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10011425.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10011425/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 5

Abstract

The intrinsic energy minimization in dynamical systems offers a valuable tool for minimizing the objective functions of computationally challenging problems in combinatorial optimization. However, most prior works have focused on mapping such dynamics to combinatorial optimization problems whose objective functions have quadratic degree [e.g., maximum cut (MaxCut)]; such problems can be represented and analyzed using graphs. However, the work on developing such models for problems that need objective functions with degree greater than two, and subsequently, entail the use of hypergraph data structures, is relatively sparse. In this work, we develop dynamical system-inspired computational models for several such problems. Specifically, we define the “energy function” for hypergraph-based combinatorial problems ranging from Boolean Satisfiability (SAT) and its variants to integer factorization, and subsequently, define the resulting system dynamics. We also show that the design approach is applicable to optimization problems with quadratic degree, and use it to develop a new dynamical system formulation for minimizing the Ising Hamiltonian. Our work not only expands on the scope of problems that can be directly mapped to, and solved using physics-inspired models, but also creates new opportunities to design high-performance accelerators for solving combinatorial optimization.
基于动力学系统的超图组合优化计算模型
动力系统中的固有能量最小化为最小化组合优化中具有计算挑战性的问题的目标函数提供了一个有价值的工具。然而,大多数先前的工作都集中在将这种动力学映射到目标函数具有二次度的组合优化问题上[例如,最大割(MaxCut)];这样的问题可以用图来表示和分析。然而,对于需要阶数大于2的目标函数的问题,以及随后需要使用超图数据结构的问题,开发此类模型的工作相对较少。在这项工作中,我们为几个这样的问题开发了受动力系统启发的计算模型。具体来说,我们定义了从布尔可满足性(SAT)及其变体到整数因子分解的基于超图的组合问题的“能量函数”,然后定义了由此产生的系统动力学。我们还证明了该设计方法适用于具有二次度的优化问题,并用它开发了一个新的最小化伊辛哈密顿量的动力系统公式。我们的工作不仅扩展了可以直接映射到并使用物理启发模型解决的问题的范围,还为设计用于解决组合优化的高性能加速器创造了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信