David A. Croydon, Makiko Sasada, Satoshi Tsujimoto
{"title":"Bi-infinite Solutions for KdV- and Toda-Type Discrete Integrable Systems Based on Path Encodings","authors":"David A. Croydon, Makiko Sasada, Satoshi Tsujimoto","doi":"10.1007/s11040-022-09435-4","DOIUrl":null,"url":null,"abstract":"<div><p>We define bi-infinite versions of four well-studied discrete integrable models, namely the ultra-discrete KdV equation, the discrete KdV equation, the ultra-discrete Toda equation, and the discrete Toda equation. For each equation, we show that there exists a unique solution to the initial value problem when the given data lies within a certain class, which includes the support of many shift ergodic measures. Our unified approach, which is also applicable to other integrable systems defined locally via lattice maps, involves the introduction of a path encoding (that is, a certain antiderivative) of the model configuration, for which we are able to describe the dynamics more generally than in previous work on finite size systems, periodic systems and semi-infinite systems. In particular, in each case we show that the behaviour of the system is characterized by a generalization of the classical ‘Pitman’s transformation’ of reflection in the past maximum, which is well-known to probabilists. The picture presented here also provides a means to identify a natural ‘carrier process’ for configurations within the given class, and is convenient for checking that the systems we discuss are all-time reversible. Finally, we investigate links between the different systems, such as showing that bi-infinite all-time solutions for the ultra-discrete KdV (resp. Toda) equation may appear as ultra-discretizations of corresponding solutions for the discrete KdV (resp. Toda) equation.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-022-09435-4.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09435-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
We define bi-infinite versions of four well-studied discrete integrable models, namely the ultra-discrete KdV equation, the discrete KdV equation, the ultra-discrete Toda equation, and the discrete Toda equation. For each equation, we show that there exists a unique solution to the initial value problem when the given data lies within a certain class, which includes the support of many shift ergodic measures. Our unified approach, which is also applicable to other integrable systems defined locally via lattice maps, involves the introduction of a path encoding (that is, a certain antiderivative) of the model configuration, for which we are able to describe the dynamics more generally than in previous work on finite size systems, periodic systems and semi-infinite systems. In particular, in each case we show that the behaviour of the system is characterized by a generalization of the classical ‘Pitman’s transformation’ of reflection in the past maximum, which is well-known to probabilists. The picture presented here also provides a means to identify a natural ‘carrier process’ for configurations within the given class, and is convenient for checking that the systems we discuss are all-time reversible. Finally, we investigate links between the different systems, such as showing that bi-infinite all-time solutions for the ultra-discrete KdV (resp. Toda) equation may appear as ultra-discretizations of corresponding solutions for the discrete KdV (resp. Toda) equation.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.