Zhang Jiang, Jin Wang, Matthew V Tirrell, Juan J de Pablo, Wei Chen
{"title":"Parameter estimation for X-ray scattering analysis with Hamiltonian Markov Chain Monte Carlo.","authors":"Zhang Jiang, Jin Wang, Matthew V Tirrell, Juan J de Pablo, Wei Chen","doi":"10.1107/S1600577522003034","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian-inference-based approaches, in particular the random-walk Markov Chain Monte Carlo (MCMC) method, have received much attention recently for X-ray scattering analysis. Hamiltonian MCMC, a state-of-the-art development in the field of MCMC, has become popular in recent years. It utilizes Hamiltonian dynamics for indirect but much more efficient drawings of the model parameters. We described the principle of the Hamiltonian MCMC for inversion problems in X-ray scattering analysis by estimating high-dimensional models for several motivating scenarios in small-angle X-ray scattering, reflectivity, and X-ray fluorescence holography. Hamiltonian MCMC with appropriate preconditioning can deliver superior performance over the random-walk MCMC, and thus can be used as an efficient tool for the statistical analysis of the parameter distributions, as well as model predictions and confidence analysis.</p>","PeriodicalId":17114,"journal":{"name":"Journal of Synchrotron Radiation","volume":"29 1","pages":"721-731"},"PeriodicalIF":2.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577522003034","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Bayesian-inference-based approaches, in particular the random-walk Markov Chain Monte Carlo (MCMC) method, have received much attention recently for X-ray scattering analysis. Hamiltonian MCMC, a state-of-the-art development in the field of MCMC, has become popular in recent years. It utilizes Hamiltonian dynamics for indirect but much more efficient drawings of the model parameters. We described the principle of the Hamiltonian MCMC for inversion problems in X-ray scattering analysis by estimating high-dimensional models for several motivating scenarios in small-angle X-ray scattering, reflectivity, and X-ray fluorescence holography. Hamiltonian MCMC with appropriate preconditioning can deliver superior performance over the random-walk MCMC, and thus can be used as an efficient tool for the statistical analysis of the parameter distributions, as well as model predictions and confidence analysis.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.