Supriya Yadav, Kulwant Singh, Anmol Gupta, Mahesh Kumar, N. N. Sharma, J. Akhtar
{"title":"Structural analysis of paper substrate for flexible microfluidics device application","authors":"Supriya Yadav, Kulwant Singh, Anmol Gupta, Mahesh Kumar, N. N. Sharma, J. Akhtar","doi":"10.1108/mi-09-2022-0172","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to predict a suitable paper substrate which has high capillary pressure with the tendency of subsequent fluid wrenching in onward direction for the fabrication of microfluidics device application.\n\n\nDesign/methodology/approach\nThe experiment has been done on the WhatmanTM grade 1, WhatmanTM chromatography and nitrocellulose paper samples which are made by GE Healthcare Life Sciences. The structural characterization of paper samples for surface properties has been done by scanning electron microscope and ImageJ software. Identification of functional groups on the surface of samples has been done by Fourier transform infrared analysis. A finite elemental analysis has also been performed by using the “Multiphase Flow in Porous Media” module of the COMSOL Multiphysics tool which combines Darcy’s law and Phase Transport in Porous Media interface.\n\n\nFindings\nExperimentally, it has been concluded that the paper substrate for flexible microfluidic device application must have large number of internal (intra- and interfiber) pores with fewer void spaces (external pores) that have high capillary pressure to propel the fluid in onward direction with narrow paper fiber channel.\n\n\nOriginality/value\nSurface structure has a dynamic impact in paper substrate utilization in multiple applications such as paper manufacturing, printing process and microfluidics applications.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-09-2022-0172","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this paper is to predict a suitable paper substrate which has high capillary pressure with the tendency of subsequent fluid wrenching in onward direction for the fabrication of microfluidics device application.
Design/methodology/approach
The experiment has been done on the WhatmanTM grade 1, WhatmanTM chromatography and nitrocellulose paper samples which are made by GE Healthcare Life Sciences. The structural characterization of paper samples for surface properties has been done by scanning electron microscope and ImageJ software. Identification of functional groups on the surface of samples has been done by Fourier transform infrared analysis. A finite elemental analysis has also been performed by using the “Multiphase Flow in Porous Media” module of the COMSOL Multiphysics tool which combines Darcy’s law and Phase Transport in Porous Media interface.
Findings
Experimentally, it has been concluded that the paper substrate for flexible microfluidic device application must have large number of internal (intra- and interfiber) pores with fewer void spaces (external pores) that have high capillary pressure to propel the fluid in onward direction with narrow paper fiber channel.
Originality/value
Surface structure has a dynamic impact in paper substrate utilization in multiple applications such as paper manufacturing, printing process and microfluidics applications.
期刊介绍:
Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details.
Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are:
• Advanced packaging
• Ceramics
• Chip attachment
• Chip on board (COB)
• Chip scale packaging
• Flexible substrates
• MEMS
• Micro-circuit technology
• Microelectronic materials
• Multichip modules (MCMs)
• Organic/polymer electronics
• Printed electronics
• Semiconductor technology
• Solid state sensors
• Thermal management
• Thick/thin film technology
• Wafer scale processing.