{"title":"MR-PIPA: An Integrated Multilevel RRAM (HfOx)-Based Processing-In-Pixel Accelerator","authors":"Minhaz Abedin;Arman Roohi;Maximilian Liehr;Nathaniel Cady;Shaahin Angizi","doi":"10.1109/JXCDC.2022.3210509","DOIUrl":null,"url":null,"abstract":"This work paves the way to realize a processing-in-pixel (PIP) accelerator based on a multilevel HfOx resistive random access memory (RRAM) as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing at edge devices. The proposed design intrinsically implements and supports a coarse-grained convolution operation in low-bit-width neural networks (NNs) leveraging a novel compute-pixel with nonvolatile weight storage at the sensor side. Our evaluations show that such a design can remarkably reduce the power consumption of data conversion and transmission to an off-chip processor maintaining accuracy compared with the recent in-sensor computing designs. Our proposed design, namely an integrated multilevel RRAM (HfOx)-based processing-in-pixel accelerator (MR-PIPA), achieves a frame rate of 1000 and efficiency of ~1.89 TOp/s/W, while it substantially reduces data conversion and transmission energy by ~84% compared to a baseline at the cost of minor accuracy degradation.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"8 2","pages":"59-67"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9969523/09905572.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9905572/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 10
Abstract
This work paves the way to realize a processing-in-pixel (PIP) accelerator based on a multilevel HfOx resistive random access memory (RRAM) as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing at edge devices. The proposed design intrinsically implements and supports a coarse-grained convolution operation in low-bit-width neural networks (NNs) leveraging a novel compute-pixel with nonvolatile weight storage at the sensor side. Our evaluations show that such a design can remarkably reduce the power consumption of data conversion and transmission to an off-chip processor maintaining accuracy compared with the recent in-sensor computing designs. Our proposed design, namely an integrated multilevel RRAM (HfOx)-based processing-in-pixel accelerator (MR-PIPA), achieves a frame rate of 1000 and efficiency of ~1.89 TOp/s/W, while it substantially reduces data conversion and transmission energy by ~84% compared to a baseline at the cost of minor accuracy degradation.