{"title":"Shear displacement gradient in X-ray Bragg coherent diffractive imaging.","authors":"Oleg Gorobtsov, Andrej Singer","doi":"10.1107/S1600577522002363","DOIUrl":null,"url":null,"abstract":"<p><p>Bragg coherent X-ray diffractive imaging is a cutting-edge method for recovering three-dimensional crystal structure with nanoscale resolution. Phase retrieval provides an atomic displacement parallel to the Bragg peak reciprocal lattice vector. The derivative of the displacement along the same vector provides the normal strain field, which typically serves as a proxy for any structural changes. In this communication it is found that the other component of the displacement gradient, perpendicular to the reciprocal lattice vector, provides additional information from the experimental data collected from nanocrystals with mobile dislocations. Demonstration on published experimental data show how the perpendicular component of the displacement gradient adds to existing analysis, enabling an estimate for the external stresses, pinpointing the location of surface dislocations, and predicting the dislocation motion in in situ experiments.</p>","PeriodicalId":17114,"journal":{"name":"Journal of Synchrotron Radiation","volume":"29 1","pages":"866-870"},"PeriodicalIF":2.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070722/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577522002363","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Bragg coherent X-ray diffractive imaging is a cutting-edge method for recovering three-dimensional crystal structure with nanoscale resolution. Phase retrieval provides an atomic displacement parallel to the Bragg peak reciprocal lattice vector. The derivative of the displacement along the same vector provides the normal strain field, which typically serves as a proxy for any structural changes. In this communication it is found that the other component of the displacement gradient, perpendicular to the reciprocal lattice vector, provides additional information from the experimental data collected from nanocrystals with mobile dislocations. Demonstration on published experimental data show how the perpendicular component of the displacement gradient adds to existing analysis, enabling an estimate for the external stresses, pinpointing the location of surface dislocations, and predicting the dislocation motion in in situ experiments.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.