Predictive model of the solder paste stencil printing process by response surface methodology

IF 1.7 4区 材料科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chun-Sheng Chen, Hai Wang, Yung-Chin Kao, Po-Jen Lu, Wei-Ren Chen
{"title":"Predictive model of the solder paste stencil printing process by response surface methodology","authors":"Chun-Sheng Chen, Hai Wang, Yung-Chin Kao, Po-Jen Lu, Wei-Ren Chen","doi":"10.1108/ssmt-08-2021-0056","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to establish the predictive equations of height, area and volume of printed solder paste during solder paste stencil printing (SPSP) process in surface mount technology (SMT) to better understand the effect of process parameters on the printing quality.\n\n\nDesign/methodology/approach\nAn experiment plan is proposed based on the response surface method (RSM). Experiments with 30 different combinations of process parameters are performed using a solder paste printer. After printing, the volume, area and height of the printed SAC105 solder paste are measured by a solder paste inspection machine. Using RSM, the predictive equations associated with the printing parameters and the printing quality of the solder paste are formed.\n\n\nFindings\nThe optimal printing parameters are 175.08 N printing pressure, 250 mm/s printing speed, 0.1 mm snap-off height and 15.7 mm/s stencil snap-off speed if the target height of solder paste is 100 µm. As the target printing area of solder paste is 1.1 mm × 1.3 mm, the optimized values of the printing parameters are 140.29 N, 100.52 mm/s, 0.63 mm and 20.25 mm/s. When both the target printing height and area are optimized together, the optimal values for the four parameters are 86.67 N, 225.76 mm/s, 0.15 mm and 1.82 mm/s.\n\n\nOriginality/value\nA simple RSM-based experimental method is proposed to formulate the predictive polynomial equations for height, area and volume of printed solder paste in terms of important SPSP parameters. The predictive equation model can be applied to the actual SPSP process, allowing engineers to quickly predict the best printing parameters during parameter setting to improve production efficiency and quality.\n","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ssmt-08-2021-0056","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose This paper aims to establish the predictive equations of height, area and volume of printed solder paste during solder paste stencil printing (SPSP) process in surface mount technology (SMT) to better understand the effect of process parameters on the printing quality. Design/methodology/approach An experiment plan is proposed based on the response surface method (RSM). Experiments with 30 different combinations of process parameters are performed using a solder paste printer. After printing, the volume, area and height of the printed SAC105 solder paste are measured by a solder paste inspection machine. Using RSM, the predictive equations associated with the printing parameters and the printing quality of the solder paste are formed. Findings The optimal printing parameters are 175.08 N printing pressure, 250 mm/s printing speed, 0.1 mm snap-off height and 15.7 mm/s stencil snap-off speed if the target height of solder paste is 100 µm. As the target printing area of solder paste is 1.1 mm × 1.3 mm, the optimized values of the printing parameters are 140.29 N, 100.52 mm/s, 0.63 mm and 20.25 mm/s. When both the target printing height and area are optimized together, the optimal values for the four parameters are 86.67 N, 225.76 mm/s, 0.15 mm and 1.82 mm/s. Originality/value A simple RSM-based experimental method is proposed to formulate the predictive polynomial equations for height, area and volume of printed solder paste in terms of important SPSP parameters. The predictive equation model can be applied to the actual SPSP process, allowing engineers to quickly predict the best printing parameters during parameter setting to improve production efficiency and quality.
基于响应面法的锡膏模板印刷过程预测模型
目的建立表面贴装技术(SMT)中锡膏模板印刷(SPSP)过程中锡膏印刷高度、面积和体积的预测方程,以更好地了解工艺参数对印刷质量的影响。设计/方法/方法提出了一种基于响应面法(RSM)的实验方案。在锡膏打印机上进行了30种不同工艺参数组合的实验。印刷完成后,用锡膏检测机对印刷出来的SAC105锡膏的体积、面积和高度进行测量。利用RSM法,建立了印刷参数与锡膏印刷质量的预测方程。结果:当锡膏目标高度为100 μ m时,最佳印刷参数为:印刷压力175.08 N,印刷速度250 mm/s,断网高度0.1 mm,模板断网速度15.7 mm/s。当锡膏的目标印刷面积为1.1 mm × 1.3 mm时,印刷参数的优化值分别为140.29 N、100.52 mm/s、0.63 mm和20.25 mm/s。当目标打印高度和面积同时优化时,4个参数的最优值分别为86.67 N、225.76 mm/s、0.15 mm和1.82 mm/s。提出了一种简单的基于rsm的实验方法,根据重要的SPSP参数,建立了印刷锡膏的高度、面积和体积的预测多项式方程。预测方程模型可应用于实际的SPSP工艺,使工程师能够在参数设置过程中快速预测最佳打印参数,以提高生产效率和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soldering & Surface Mount Technology
Soldering & Surface Mount Technology 工程技术-材料科学:综合
CiteScore
4.10
自引率
15.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International. The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信