Siqi Wang, Zhengyu Luo, Weiguang Liu, Tengfei Hu, Zhongying Zhao, Michael G Rosenfeld, Xiaoyuan Song
{"title":"The 3D genome and its impacts on human health and disease.","authors":"Siqi Wang, Zhengyu Luo, Weiguang Liu, Tengfei Hu, Zhongying Zhao, Michael G Rosenfeld, Xiaoyuan Song","doi":"10.1093/lifemedi/lnad012","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic genomes are highly compacted in the cell nucleus. Two loci separated by a long linear distance can be brought into proximity in space through DNA-binding proteins and RNAs, which contributes profoundly to the regulation of gene expression. Recent technology advances have enabled the development and application of the chromosome conformation capture (3C) technique and a host of 3C-based methods that enable genome-scale investigations into changes in chromatin high-order structures during diverse physiological processes and diseases. In this review, we introduce 3C-based technologies and discuss how they can be utilized to glean insights into the impacts of three-dimensional (3D) genome organization in normal physiological and disease processes.</p>","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":" ","pages":"lnad012"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749360/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/lifemedi/lnad012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Eukaryotic genomes are highly compacted in the cell nucleus. Two loci separated by a long linear distance can be brought into proximity in space through DNA-binding proteins and RNAs, which contributes profoundly to the regulation of gene expression. Recent technology advances have enabled the development and application of the chromosome conformation capture (3C) technique and a host of 3C-based methods that enable genome-scale investigations into changes in chromatin high-order structures during diverse physiological processes and diseases. In this review, we introduce 3C-based technologies and discuss how they can be utilized to glean insights into the impacts of three-dimensional (3D) genome organization in normal physiological and disease processes.