Effects of Exopolysaccharides from Lactiplantibacillus plantarum JLAU103 on Intestinal Immune Response, Oxidative Stress, and Microbial Communities in Cyclophosphamide-Induced Immunosuppressed Mice
Ji Wang, Meihe Li, Yawen Gao, Hongmei Li, Li Fang, Chunlei Liu, Xiaoting Liu, Weihong Min*
{"title":"Effects of Exopolysaccharides from Lactiplantibacillus plantarum JLAU103 on Intestinal Immune Response, Oxidative Stress, and Microbial Communities in Cyclophosphamide-Induced Immunosuppressed Mice","authors":"Ji Wang, Meihe Li, Yawen Gao, Hongmei Li, Li Fang, Chunlei Liu, Xiaoting Liu, Weihong Min*","doi":"10.1021/acs.jafc.1c06502","DOIUrl":null,"url":null,"abstract":"<p >This study investigated the effects of the exopolysaccharide from <i>Lactiplantibacillus plantarum</i> JLAU103 (EPS103) on the intestinal immune response, oxidative stress, intestinal mucosal barrier, and microbial community in cyclophosphamide-induced immune-suppressed mice. The results showed that EPS103 promoted the secretion of cytokines and the generation of secretory immunoglobulin A and mucin-2 in the small intestine of mice, which might be related to the activation of the MAPK pathway. Additionally, EPS103 protected against oxidative stress by activating antioxidation enzymes and Nrf2/Keap1 pathways. It also improved the intestinal physical barrier functions <i>via</i> regulating the ratio of villous height to crypt depth and upregulating the expression of tight-junction proteins. Meanwhile, EPS103 promoted the generation of short-chain fatty acids (SCFAs) and modulated the constituents of gut microbiota. These results suggested that EPS103 may modulate the intestinal immunoresponse relying on the regulation of SCFA production and gut microbiota in immunosuppressed mice, resulting in the activation of systemic immunity.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"70 7","pages":"2197–2210"},"PeriodicalIF":6.2000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.1c06502","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 19
Abstract
This study investigated the effects of the exopolysaccharide from Lactiplantibacillus plantarum JLAU103 (EPS103) on the intestinal immune response, oxidative stress, intestinal mucosal barrier, and microbial community in cyclophosphamide-induced immune-suppressed mice. The results showed that EPS103 promoted the secretion of cytokines and the generation of secretory immunoglobulin A and mucin-2 in the small intestine of mice, which might be related to the activation of the MAPK pathway. Additionally, EPS103 protected against oxidative stress by activating antioxidation enzymes and Nrf2/Keap1 pathways. It also improved the intestinal physical barrier functions via regulating the ratio of villous height to crypt depth and upregulating the expression of tight-junction proteins. Meanwhile, EPS103 promoted the generation of short-chain fatty acids (SCFAs) and modulated the constituents of gut microbiota. These results suggested that EPS103 may modulate the intestinal immunoresponse relying on the regulation of SCFA production and gut microbiota in immunosuppressed mice, resulting in the activation of systemic immunity.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.