{"title":"An improved TOPSIS method for multi-criteria decision making based on hesitant fuzzy β neighborhood","authors":"Chenxia Jin, Jusheng Mi, Fachao Li, Meishe Liang","doi":"10.1007/s10462-023-10510-7","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-criteria Decision Making (MCDM) plays a very vital role in many application fields. There are many classical methods to solve the MCDM problems if the available information is crisp. However, the uncertainty and ambiguity inherent in the MCDM often makes these methods unsuitable for solving this kind of problem. Aims at the failures of TOPSIS method that can not rank the alternatives completely in a Hesitant Fuzzy <i>β</i>-Covering Approximation Space (HFβCAS), we develop an improved TOPSIS method. First, we define two pairs of hesitant fuzzy relationship based on hesitant fuzzy <i>β</i>-neighborhood, and construct the corresponding hesitant fuzzy covering rough set models; further we discuss the properties and relationships between the models. Second, we introduce a new comprehensive weight determination method by using the precision degree of hesitant fuzzy covering rough set and the maximizing deviation method. Third, we construct a γ-βCHF-TOPSIS method to MCDM which generalizes the TOPSIS method in an HFβCAS. Finally, two real decision-making problems are used to illustrate the concrete implementation process of γ-βCHF-TOPSIS method, and demonstrate its effectiveness and reasonability.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"56 1","pages":"793 - 831"},"PeriodicalIF":10.7000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-023-10510-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
Multi-criteria Decision Making (MCDM) plays a very vital role in many application fields. There are many classical methods to solve the MCDM problems if the available information is crisp. However, the uncertainty and ambiguity inherent in the MCDM often makes these methods unsuitable for solving this kind of problem. Aims at the failures of TOPSIS method that can not rank the alternatives completely in a Hesitant Fuzzy β-Covering Approximation Space (HFβCAS), we develop an improved TOPSIS method. First, we define two pairs of hesitant fuzzy relationship based on hesitant fuzzy β-neighborhood, and construct the corresponding hesitant fuzzy covering rough set models; further we discuss the properties and relationships between the models. Second, we introduce a new comprehensive weight determination method by using the precision degree of hesitant fuzzy covering rough set and the maximizing deviation method. Third, we construct a γ-βCHF-TOPSIS method to MCDM which generalizes the TOPSIS method in an HFβCAS. Finally, two real decision-making problems are used to illustrate the concrete implementation process of γ-βCHF-TOPSIS method, and demonstrate its effectiveness and reasonability.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.