Opening the black box: Uncovering the leader trait paradigm through machine learning

IF 9.1 1区 管理学 Q1 MANAGEMENT
Brian M. Doornenbal , Brian R. Spisak , Paul A. van der Laken
{"title":"Opening the black box: Uncovering the leader trait paradigm through machine learning","authors":"Brian M. Doornenbal ,&nbsp;Brian R. Spisak ,&nbsp;Paul A. van der Laken","doi":"10.1016/j.leaqua.2021.101515","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the traits that define a leader is a perennial quest. An ongoing debate surrounds the complexity required to unravel the leader trait paradigm. With the advancement of machine learning, scholars are now better equipped to model leadership as an outcome of complex patterns in traits. However, interpreting those models is often harder. In this paper, we guide researchers in the application of machine learning techniques to uncover complex relationships. Specifically, we demonstrate how applying machine learning can help to assess the complexity of a relationship and show techniques that help interpret the outcomes of “black box” machine learning algorithms. While demonstrating techniques to uncover complex relationships, we are using the Big Five Inventory and need for cognition to predict leadership role occupancy. Among our sample (n = 3385), we find that the leader trait paradigm can benefit from modeling complexity beyond linear effects and generate several interpretable results.</p></div>","PeriodicalId":48434,"journal":{"name":"Leadership Quarterly","volume":"33 5","pages":"Article 101515"},"PeriodicalIF":9.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.leaqua.2021.101515","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leadership Quarterly","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1048984321000205","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 19

Abstract

Understanding the traits that define a leader is a perennial quest. An ongoing debate surrounds the complexity required to unravel the leader trait paradigm. With the advancement of machine learning, scholars are now better equipped to model leadership as an outcome of complex patterns in traits. However, interpreting those models is often harder. In this paper, we guide researchers in the application of machine learning techniques to uncover complex relationships. Specifically, we demonstrate how applying machine learning can help to assess the complexity of a relationship and show techniques that help interpret the outcomes of “black box” machine learning algorithms. While demonstrating techniques to uncover complex relationships, we are using the Big Five Inventory and need for cognition to predict leadership role occupancy. Among our sample (n = 3385), we find that the leader trait paradigm can benefit from modeling complexity beyond linear effects and generate several interpretable results.

打开黑盒子:通过机器学习揭示领导者特质范式
了解领导者的特质是一个长期的探索。围绕解开领导特质范式所需的复杂性,一场正在进行的辩论。随着机器学习的进步,学者们现在可以更好地将领导力作为复杂特征模式的结果来建模。然而,解释这些模型通常比较困难。在本文中,我们指导研究人员应用机器学习技术来揭示复杂的关系。具体来说,我们展示了如何应用机器学习来帮助评估关系的复杂性,并展示了有助于解释“黑箱”机器学习算法结果的技术。在展示揭示复杂关系的技术的同时,我们正在使用五大清单和认知需求来预测领导角色的占用。在我们的样本(n = 3385)中,我们发现领导者特质范式可以受益于超越线性效应的建模复杂性,并产生几个可解释的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.20
自引率
9.30%
发文量
58
期刊介绍: The Leadership Quarterly is a social-science journal dedicated to advancing our understanding of leadership as a phenomenon, how to study it, as well as its practical implications. Leadership Quarterly seeks contributions from various disciplinary perspectives, including psychology broadly defined (i.e., industrial-organizational, social, evolutionary, biological, differential), management (i.e., organizational behavior, strategy, organizational theory), political science, sociology, economics (i.e., personnel, behavioral, labor), anthropology, history, and methodology.Equally desirable are contributions from multidisciplinary perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信