Zain ul Abidin Jaffri, Zeeshan Ahmad, Asif Kabir, S. Bukhari
{"title":"A novel miniaturized Koch-Minkowski hybrid fractal antenna","authors":"Zain ul Abidin Jaffri, Zeeshan Ahmad, Asif Kabir, S. Bukhari","doi":"10.1108/mi-07-2021-0069","DOIUrl":null,"url":null,"abstract":"\nPurpose\nAntenna miniaturization, multiband operation and wider operational bandwidth are vital to achieve optimal design for modern wireless communication devices. Using fractal geometries is recognized as one of the most promising solutions to attain these characteristics. The purpose of this paper is to present a unique structure of patch antenna using hybrid fractal technique to enhance the performance characteristics for various wireless applications and to achieve better miniaturization.\n\n\nDesign/methodology/approach\nIn this paper, the authors propose a novel hybrid fractal antenna by combining Koch and Minkowski (K-M) fractal geometries. A microstrip patch antenna (MPA) operating at 1.8 GHz is incorporated with a novel K-M hybrid fractal geometry. The proposed fractal antenna is designed and simulated in CST Microwave studio and compared with existing Koch fractal geometry. The prototype for the third iteration of the K-M fractal antenna is then fabricated on FR-4 substrate and tested through vector network analyzer for operating band/voltage standing wave ratio.\n\n\nFindings\nThe third iteration of the proposed K-M fractal geometry results in achieving a 20% size reduction as compared to an ordinary MPA for the same resonant frequency with impedance bandwidth of 16.25 MHz and a directional gain of 6.48 dB, respectively. The operating frequency of MPA also lowers down to 1.44 GHz.\n\n\nOriginality/value\nFurther testing for the radiation patterns in an anechoic chamber shows good agreement to those of simulated results.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-07-2021-0069","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose
Antenna miniaturization, multiband operation and wider operational bandwidth are vital to achieve optimal design for modern wireless communication devices. Using fractal geometries is recognized as one of the most promising solutions to attain these characteristics. The purpose of this paper is to present a unique structure of patch antenna using hybrid fractal technique to enhance the performance characteristics for various wireless applications and to achieve better miniaturization.
Design/methodology/approach
In this paper, the authors propose a novel hybrid fractal antenna by combining Koch and Minkowski (K-M) fractal geometries. A microstrip patch antenna (MPA) operating at 1.8 GHz is incorporated with a novel K-M hybrid fractal geometry. The proposed fractal antenna is designed and simulated in CST Microwave studio and compared with existing Koch fractal geometry. The prototype for the third iteration of the K-M fractal antenna is then fabricated on FR-4 substrate and tested through vector network analyzer for operating band/voltage standing wave ratio.
Findings
The third iteration of the proposed K-M fractal geometry results in achieving a 20% size reduction as compared to an ordinary MPA for the same resonant frequency with impedance bandwidth of 16.25 MHz and a directional gain of 6.48 dB, respectively. The operating frequency of MPA also lowers down to 1.44 GHz.
Originality/value
Further testing for the radiation patterns in an anechoic chamber shows good agreement to those of simulated results.
期刊介绍:
Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details.
Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are:
• Advanced packaging
• Ceramics
• Chip attachment
• Chip on board (COB)
• Chip scale packaging
• Flexible substrates
• MEMS
• Micro-circuit technology
• Microelectronic materials
• Multichip modules (MCMs)
• Organic/polymer electronics
• Printed electronics
• Semiconductor technology
• Solid state sensors
• Thermal management
• Thick/thin film technology
• Wafer scale processing.