Structural mechanism of Fab domain dissociation as a measure of interface stability

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nancy D. Pomarici, Franz Waibl, Patrick K. Quoika, Alexander Bujotzek, Guy Georges, Monica L. Fernández-Quintero, Klaus R. Liedl
{"title":"Structural mechanism of Fab domain dissociation as a measure of interface stability","authors":"Nancy D. Pomarici,&nbsp;Franz Waibl,&nbsp;Patrick K. Quoika,&nbsp;Alexander Bujotzek,&nbsp;Guy Georges,&nbsp;Monica L. Fernández-Quintero,&nbsp;Klaus R. Liedl","doi":"10.1007/s10822-023-00501-9","DOIUrl":null,"url":null,"abstract":"<div><p>Therapeutic antibodies should not only recognize antigens specifically, but also need to be free from developability issues, such as poor stability. Thus, the mechanistic understanding and characterization of stability are critical determinants for rational antibody design. In this study, we use molecular dynamics simulations to investigate the melting process of 16 antigen binding fragments (Fabs). We describe the Fab dissociation mechanisms, showing a separation in the V<sub>H</sub>–V<sub>L</sub> and in the C<sub>H</sub>1–C<sub>L</sub> domains. We found that the depths of the minima in the free energy curve, corresponding to the bound states, correlate with the experimentally determined melting temperatures. Additionally, we provide a detailed structural description of the dissociation mechanism and identify key interactions in the CDR loops and in the C<sub>H</sub>1–C<sub>L</sub> interface that contribute to stabilization. The dissociation of the V<sub>H</sub>–V<sub>L</sub> or C<sub>H</sub>1–C<sub>L</sub> domains can be represented by conformational changes in the bend angles between the domains. Our findings elucidate the melting process of antigen binding fragments and highlight critical residues in both the variable and constant domains, which are also strongly germline dependent. Thus, our proposed mechanisms have broad implications in the development and design of new and more stable antigen binding fragments.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-023-00501-9.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-023-00501-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Therapeutic antibodies should not only recognize antigens specifically, but also need to be free from developability issues, such as poor stability. Thus, the mechanistic understanding and characterization of stability are critical determinants for rational antibody design. In this study, we use molecular dynamics simulations to investigate the melting process of 16 antigen binding fragments (Fabs). We describe the Fab dissociation mechanisms, showing a separation in the VH–VL and in the CH1–CL domains. We found that the depths of the minima in the free energy curve, corresponding to the bound states, correlate with the experimentally determined melting temperatures. Additionally, we provide a detailed structural description of the dissociation mechanism and identify key interactions in the CDR loops and in the CH1–CL interface that contribute to stabilization. The dissociation of the VH–VL or CH1–CL domains can be represented by conformational changes in the bend angles between the domains. Our findings elucidate the melting process of antigen binding fragments and highlight critical residues in both the variable and constant domains, which are also strongly germline dependent. Thus, our proposed mechanisms have broad implications in the development and design of new and more stable antigen binding fragments.

Abstract Image

作为界面稳定性测度的Fab畴解离的结构机理
治疗性抗体不仅要特异性识别抗原,而且要避免稳定性差等可发展性问题。因此,机制的理解和稳定性的表征是合理的抗体设计的关键决定因素。在本研究中,我们利用分子动力学模拟研究了16个抗原结合片段(fab)的熔化过程。我们描述了Fab的解离机制,显示了VH-VL和CH1-CL结构域的分离。我们发现,与束缚态相对应的自由能曲线的最小值深度与实验确定的熔化温度有关。此外,我们提供了解离机制的详细结构描述,并确定了CDR环和CH1-CL界面中有助于稳定的关键相互作用。VH-VL或CH1-CL结构域的解离可以用结构域之间弯曲角度的构象变化来表示。我们的研究结果阐明了抗原结合片段的融化过程,并强调了可变和恒定结构域的关键残基,这些残基也强烈依赖于种系。因此,我们提出的机制对开发和设计新的更稳定的抗原结合片段具有广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信