Shikha Shiromani , M.M. Patil , Ilaiyaraja Nallamuthu , Rajamanickam R , Dongzagin Singsit , T. Anand
{"title":"Shellac/caseinate as a composite nanocarrier for improved bioavailability of quercetin","authors":"Shikha Shiromani , M.M. Patil , Ilaiyaraja Nallamuthu , Rajamanickam R , Dongzagin Singsit , T. Anand","doi":"10.1016/j.fhfh.2022.100113","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, quercetin (a flavonoid) was encapsulated using biodegradable composite polymers of sodium caseinate and shellac for its improved bioavailability. The quercetin-loaded shellac-caseinate composite nanoparticles (QSNPs) were prepared by anti-solvent precipitation method. Under the optimal combinations of process factors (sodium caseinate 2.5%, shellac 2% and pH 6.8,) the nanocomplexes had the sizes, PDI, zeta potential and encapsulation efficiency of 222 ± 0.19 nm, 0.11, -33.6 mV and 79%, respectively. The optimised nanocolloids were characterised using SEM and AFM microscopes for morphological features. The <em>in vitro</em> release study in simulated gastric and intestinal fluids showed a sustained release of the quercetin from the nanostructures. In rats, the oral administration of single equivalent dosage of quercetin (50 mg/kg b.wt) showed 18.6-fold increase in the relative bioavailability for QSNPs compared to suspension form. These results suggest that the composites of shellac/caseinate matrices can be promising carrier for the oral delivery of hydrophobic phytocompounds with enhanced therapeutic properties in various foods and pharmaceutical applications.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids for Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667025922000590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
In the present study, quercetin (a flavonoid) was encapsulated using biodegradable composite polymers of sodium caseinate and shellac for its improved bioavailability. The quercetin-loaded shellac-caseinate composite nanoparticles (QSNPs) were prepared by anti-solvent precipitation method. Under the optimal combinations of process factors (sodium caseinate 2.5%, shellac 2% and pH 6.8,) the nanocomplexes had the sizes, PDI, zeta potential and encapsulation efficiency of 222 ± 0.19 nm, 0.11, -33.6 mV and 79%, respectively. The optimised nanocolloids were characterised using SEM and AFM microscopes for morphological features. The in vitro release study in simulated gastric and intestinal fluids showed a sustained release of the quercetin from the nanostructures. In rats, the oral administration of single equivalent dosage of quercetin (50 mg/kg b.wt) showed 18.6-fold increase in the relative bioavailability for QSNPs compared to suspension form. These results suggest that the composites of shellac/caseinate matrices can be promising carrier for the oral delivery of hydrophobic phytocompounds with enhanced therapeutic properties in various foods and pharmaceutical applications.