Designing a novel method based on multiplex PCR for detecting various meat of birds in processed ground meat products

IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY
Negin Rajaei , Abbas Doosti
{"title":"Designing a novel method based on multiplex PCR for detecting various meat of birds in processed ground meat products","authors":"Negin Rajaei ,&nbsp;Abbas Doosti","doi":"10.1016/j.fochms.2023.100177","DOIUrl":null,"url":null,"abstract":"<div><p>Falsified food directly influences wildlife, fair trade, religion, and the health of society. Here, we report a multiplex polymerase chain reaction to evaluate the accurate determination of seven species of bird meat in meals on a single assay platform. To amplify segments of DNA from<!--> <!-->Columba livia, Corvus moneduloides, Gallus gallus, Coturnix japonica, Phasianus colchicus, Struthio camelus, and Meleagris gallopavo<!--> <!-->meats, respectively, a total of seven sets of species-specific primers targeting the mitochondrial and cytochrome <em>b</em> genes were developed. Gel photographs and electrochromatography from an Experion Bioanalyzer were used to identify all PCR products. Species specificity checks discovered no cross-species amplification. The applicability of its screening to find target species in processed food was shown in commercial and model meatballs. A validation study revealed that the test is reliable, quick, affordable, repeatable, specific, and accurate down to 50,000 mitochondrial copies. It might be used for raw meats and products involving processed and severely deteriorated food samples. The customers, the food business, and law enforcement would all benefit immensely from this suggested approach.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"7 ","pages":"Article 100177"},"PeriodicalIF":4.1000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566223000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Falsified food directly influences wildlife, fair trade, religion, and the health of society. Here, we report a multiplex polymerase chain reaction to evaluate the accurate determination of seven species of bird meat in meals on a single assay platform. To amplify segments of DNA from Columba livia, Corvus moneduloides, Gallus gallus, Coturnix japonica, Phasianus colchicus, Struthio camelus, and Meleagris gallopavo meats, respectively, a total of seven sets of species-specific primers targeting the mitochondrial and cytochrome b genes were developed. Gel photographs and electrochromatography from an Experion Bioanalyzer were used to identify all PCR products. Species specificity checks discovered no cross-species amplification. The applicability of its screening to find target species in processed food was shown in commercial and model meatballs. A validation study revealed that the test is reliable, quick, affordable, repeatable, specific, and accurate down to 50,000 mitochondrial copies. It might be used for raw meats and products involving processed and severely deteriorated food samples. The customers, the food business, and law enforcement would all benefit immensely from this suggested approach.

一种基于多重聚合酶链式反应检测加工肉制品中各种禽类肉类的新方法的设计
伪造食品直接影响野生动物、公平贸易、宗教和社会健康。在这里,我们报道了一种多重聚合酶链式反应,以评估在单一检测平台上对膳食中七种鸟肉的准确测定。为了扩增分别来自鹅肝、蒙氏Corvus moneduloides、Gallus Gallus、Coturnix japonica、Phasianus colchicus、Struthio camelus和Meleagris gallopavo肉的DNA片段,共开发了7套针对线粒体和细胞色素b基因的物种特异性引物。使用Experion生物分析仪的凝胶照片和电色谱法鉴定所有PCR产物。物种特异性检查未发现跨物种扩增。其筛选在加工食品中寻找目标物种的适用性在商业和模型肉丸中得到了证明。一项验证研究表明,该测试可靠、快速、经济实惠、可重复、特异性强,准确度低至50000个线粒体拷贝。它可能用于生肉和涉及加工和严重变质食品样品的产品。顾客、食品企业和执法部门都将从这一建议中受益匪浅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry Molecular Sciences
Food Chemistry Molecular Sciences Agricultural and Biological Sciences-Food Science
CiteScore
6.00
自引率
0.00%
发文量
83
审稿时长
82 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信