{"title":"Effects of Tolerant Nanoparticles Loaded with Various Regulatory Molecules on the Development of Experimental Autoimmune Encephalomyelitis","authors":"Weiwei Liang, Lin Cong, Hongmei Yu","doi":"10.1166/sam.2023.4503","DOIUrl":null,"url":null,"abstract":"This research investigated the effects of tolerating nanoparticles (tNPs) loaded with multiple regulatory molecules on progression of experimental autoimmune encephalomyelitis (EAE). The polylactic acid-glycolic acid copolymer (PLGA), multiple regulatory molecular fragments (Fc) (programmed\n death receptor ligand 1-Fc (PD-L1-Fc), CD47-Fc), transforming growth factor (TGF-β1), and multiple oligodendrocyte glycoprotein (MOG) antigen peptides (p-MOG) were selected to prepare the tNPs (MRM-tNPs) loaded with various regulatory molecules. Then, the MRM-tNPs were applied\n in MOG35-55 polypeptide-induced EAE mouse model. According to the treatment methods, the mice were rolled into a group A (BS therapeutic agent), a group B (no-load-NPs), a group C (MOG-tNPs), and a group D (MRM-tNPs). The therapeutic effects were evaluated by the inflammatory infiltration\n degree (IID), demyelination loss degree (DLD), and apoptosis rate (AR) of CD4+ and CD8+ T cells. The Results showed that the encapsulation rate (ER) of TGF-β1 was 87.65%, and its cumulative release rate (RR) was 58.22%. There were obvious fluorescence signals\n on MRM-tNPs, MRM-tNPs without PD-L1, and MRM-tNPs without CD47. The neurological function (NF) score in the group D after MRM-tNPs treatment was less than 2 points (P <0.05). The scores of IID and DLD in the brain and spinal cord (SC) of EAE mice in the group D were much lower to\n those in groups A, B, and C, and the ARs of CD4+ and CD8+ T cells were higher (P <0.05). In conclusion, the tNPs loaded with various regulatory molecules can promote the apoptosis of antigen-specific T cells (AST) and reduce the infiltration and demyelination\n of inflammatory cells, thus alleviating the EAE.","PeriodicalId":21671,"journal":{"name":"Science of Advanced Materials","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1166/sam.2023.4503","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research investigated the effects of tolerating nanoparticles (tNPs) loaded with multiple regulatory molecules on progression of experimental autoimmune encephalomyelitis (EAE). The polylactic acid-glycolic acid copolymer (PLGA), multiple regulatory molecular fragments (Fc) (programmed
death receptor ligand 1-Fc (PD-L1-Fc), CD47-Fc), transforming growth factor (TGF-β1), and multiple oligodendrocyte glycoprotein (MOG) antigen peptides (p-MOG) were selected to prepare the tNPs (MRM-tNPs) loaded with various regulatory molecules. Then, the MRM-tNPs were applied
in MOG35-55 polypeptide-induced EAE mouse model. According to the treatment methods, the mice were rolled into a group A (BS therapeutic agent), a group B (no-load-NPs), a group C (MOG-tNPs), and a group D (MRM-tNPs). The therapeutic effects were evaluated by the inflammatory infiltration
degree (IID), demyelination loss degree (DLD), and apoptosis rate (AR) of CD4+ and CD8+ T cells. The Results showed that the encapsulation rate (ER) of TGF-β1 was 87.65%, and its cumulative release rate (RR) was 58.22%. There were obvious fluorescence signals
on MRM-tNPs, MRM-tNPs without PD-L1, and MRM-tNPs without CD47. The neurological function (NF) score in the group D after MRM-tNPs treatment was less than 2 points (P <0.05). The scores of IID and DLD in the brain and spinal cord (SC) of EAE mice in the group D were much lower to
those in groups A, B, and C, and the ARs of CD4+ and CD8+ T cells were higher (P <0.05). In conclusion, the tNPs loaded with various regulatory molecules can promote the apoptosis of antigen-specific T cells (AST) and reduce the infiltration and demyelination
of inflammatory cells, thus alleviating the EAE.