A \({\mathbb {Z}}_{2}\)-Topological Index for Quasi-Free Fermions

IF 0.9 3区 数学 Q3 MATHEMATICS, APPLIED
N. J. B. Aza, A. F. Reyes-Lega, L. A. M. Sequera
{"title":"A \\({\\mathbb {Z}}_{2}\\)-Topological Index for Quasi-Free Fermions","authors":"N. J. B. Aza,&nbsp;A. F. Reyes-Lega,&nbsp;L. A. M. Sequera","doi":"10.1007/s11040-022-09421-w","DOIUrl":null,"url":null,"abstract":"<div><p>We use infinite dimensional self-dual <span>\\(\\mathrm {CAR}\\)</span> <span>\\(C^{*}\\)</span>-algebras to study a <span>\\({\\mathbb {Z}}_{2}\\)</span>-index, which classifies free-fermion systems embedded on <span>\\({\\mathbb {Z}}^{d}\\)</span> disordered lattices. Combes–Thomas estimates are pivotal to show that the <span>\\({\\mathbb {Z}}_{2}\\)</span>-index is uniform with respect to the size of the system. We additionally deal with the set of ground states to completely describe the mathematical structure of the underlying system. Furthermore, the weak<span>\\(^{*}\\)</span>-topology of the set of linear functionals is used to analyze paths connecting different sets of ground states.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"25 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09421-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We use infinite dimensional self-dual \(\mathrm {CAR}\) \(C^{*}\)-algebras to study a \({\mathbb {Z}}_{2}\)-index, which classifies free-fermion systems embedded on \({\mathbb {Z}}^{d}\) disordered lattices. Combes–Thomas estimates are pivotal to show that the \({\mathbb {Z}}_{2}\)-index is uniform with respect to the size of the system. We additionally deal with the set of ground states to completely describe the mathematical structure of the underlying system. Furthermore, the weak\(^{*}\)-topology of the set of linear functionals is used to analyze paths connecting different sets of ground states.

准自由费米子的\({\mathbb {Z}}_{2}\) -拓扑指数
利用无限维自对偶\(\mathrm {CAR}\)\(C^{*}\) -代数研究了一个\({\mathbb {Z}}_{2}\) -指标,该指标对嵌入在\({\mathbb {Z}}^{d}\)无序格上的自由费米子系统进行了分类。库姆斯-托马斯的估计对于表明\({\mathbb {Z}}_{2}\) -指数相对于系统的大小是一致的至关重要。我们还处理了一组基态,以完整地描述底层系统的数学结构。此外,利用线性泛函集的弱\(^{*}\) -拓扑来分析连接不同基态集的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Physics, Analysis and Geometry
Mathematical Physics, Analysis and Geometry 数学-物理:数学物理
CiteScore
2.10
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas. The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process. The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed. The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信