{"title":"Electrospun fiber-based flexible electronics: Fiber fabrication, device platform, functionality integration and applications","authors":"Qiang Gao , Seema Agarwal , Andreas Greiner , Ting Zhang","doi":"10.1016/j.pmatsci.2023.101139","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Flexible electronics have attracted considerable attention in the past two decades due to their distinctive features and numerous potential applications in electronic skins, human–machine interfaces, flexible displays, wearable sensors, portable energy devices, and </span>implantable devices. Electrospun fibers offer excellent </span>mechanical properties and tailored physicochemical properties, which are highly promising for the fabrication of emerging flexible electronics. This article provides a comprehensive review of the electrospun fiber-based flexible electronics, ranging from the introduction of electrospinning technology, diversity of electrospun fibers, and integration strategy of electrospun fiber electronics to various sensing platforms, including an electrode, resistive, capacitive, piezo/triboelectric, electrochemical, and transistor types. These electrospun fiber-based sensing devices can be integrated within multiple sensing modalities, wireless communication, self-power, and heat management function, and benefit from the advantages of electrospun fibers, such as flexibility, robustness, high porosity, diverse fiber morphology and assembly, lightweight, and low-cost, these electrospun fiber-based flexible electronics play an increasingly significant role in daily life for the monitoring of individual healthcare, including biophysical signal detection, biochemical signal detection, electrophysiological signal detection, and promoting cell and tissue regeneration serving as implantable devices. At the end of the review, several future ways to go with electrospun fiber-based flexible electronics are proposed.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"137 ","pages":"Article 101139"},"PeriodicalIF":40.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642523000713","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Flexible electronics have attracted considerable attention in the past two decades due to their distinctive features and numerous potential applications in electronic skins, human–machine interfaces, flexible displays, wearable sensors, portable energy devices, and implantable devices. Electrospun fibers offer excellent mechanical properties and tailored physicochemical properties, which are highly promising for the fabrication of emerging flexible electronics. This article provides a comprehensive review of the electrospun fiber-based flexible electronics, ranging from the introduction of electrospinning technology, diversity of electrospun fibers, and integration strategy of electrospun fiber electronics to various sensing platforms, including an electrode, resistive, capacitive, piezo/triboelectric, electrochemical, and transistor types. These electrospun fiber-based sensing devices can be integrated within multiple sensing modalities, wireless communication, self-power, and heat management function, and benefit from the advantages of electrospun fibers, such as flexibility, robustness, high porosity, diverse fiber morphology and assembly, lightweight, and low-cost, these electrospun fiber-based flexible electronics play an increasingly significant role in daily life for the monitoring of individual healthcare, including biophysical signal detection, biochemical signal detection, electrophysiological signal detection, and promoting cell and tissue regeneration serving as implantable devices. At the end of the review, several future ways to go with electrospun fiber-based flexible electronics are proposed.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.